論文の概要: Exploiting Similarity for Computation and Communication-Efficient Decentralized Optimization
- arxiv url: http://arxiv.org/abs/2506.05791v1
- Date: Fri, 06 Jun 2025 06:37:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.351875
- Title: Exploiting Similarity for Computation and Communication-Efficient Decentralized Optimization
- Title(参考訳): 計算と通信効率の良い分散最適化のための類似解の公開
- Authors: Yuki Takezawa, Xiaowen Jiang, Anton Rodomanov, Sebastian U. Stich,
- Abstract要約: 本研究では,最先端通信と計算複雑性を実現するSPDO法を提案する。
実験の結果,SPDOは既存の手法よりも有意に優れていた。
- 参考スコア(独自算出の注目度): 19.81438528494734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reducing communication complexity is critical for efficient decentralized optimization. The proximal decentralized optimization (PDO) framework is particularly appealing, as methods within this framework can exploit functional similarity among nodes to reduce communication rounds. Specifically, when local functions at different nodes are similar, these methods achieve faster convergence with fewer communication steps. However, existing PDO methods often require highly accurate solutions to subproblems associated with the proximal operator, resulting in significant computational overhead. In this work, we propose the Stabilized Proximal Decentralized Optimization (SPDO) method, which achieves state-of-the-art communication and computational complexities within the PDO framework. Additionally, we refine the analysis of existing PDO methods by relaxing subproblem accuracy requirements and leveraging average functional similarity. Experimental results demonstrate that SPDO significantly outperforms existing methods.
- Abstract(参考訳): 効率的な分散最適化には、通信複雑性の低減が不可欠である。
このフレームワークのメソッドはノード間の機能的類似性を利用して通信ラウンドを減らすことができるため、PDOフレームワークは特に魅力的である。
具体的には、異なるノードの局所関数が類似している場合、これらの手法はより少ない通信ステップでより高速な収束を実現する。
しかし、既存のPDO法では、近位演算子に付随するサブプロブレムに対する高精度な解を必要とすることが多く、計算オーバーヘッドがかなり大きい。
本研究では,PDOフレームワーク内での最先端通信と計算複雑性を実現するSPDO手法を提案する。
さらに、サブプロブレムの精度要件を緩和し、平均機能的類似性を活用することにより、既存のPDO手法の解析を洗練する。
実験の結果,SPDOは既存の手法よりも有意に優れていた。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Stabilized Proximal-Point Methods for Federated Optimization [20.30761752651984]
非加速アルゴリズムの通信複雑性は、分散近位点アルゴリズムであるDANEによって達成される。
ハイブリッド投影近点法に着想を得て,新しい分散アルゴリズムS-DANEを提案する。
S-DANEは、S-DANEとして良好な局所計算効率を保ちながら、通信の複雑さを最もよく表すことを示す。
論文 参考訳(メタデータ) (2024-07-09T17:56:29Z) - Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
通信ネットワークのノード間で分散的に格納された凸関数の総和を最小化するタスクについて検討する。
この問題を解決するのに必要な分散通信数と(サブ)漸進計算の下位境界が確立されている。
我々は,これらの下界に適合する最初の最適アルゴリズムを開発し,既存の最先端技術と比較して理論性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-05-28T10:28:45Z) - Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD
for Communication Efficient Nonconvex Distributed Learning [58.79085525115987]
ローカル手法は通信時間を短縮する有望なアプローチの1つである。
局所的データセットが局所的損失の滑らかさよりも小さい場合,通信の複雑さは非局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-12T15:12:17Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
集中ノードを持たないエージェントネットワーク上での分散(強い凸)最適化問題について検討する。
$varepsilon$-solutionは$tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$通信ステップ数で達成される。
この速度は、関心のクラスに適用される分散ゴシップ-アルゴリズムの、初めて(ポリログ因子まで)より低い複雑性の通信境界と一致する。
論文 参考訳(メタデータ) (2021-10-24T04:03:00Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
インターネット・オブ・シング、ネットワークセンシング、自律システム、有限サム最適化のための分散アルゴリズムのためのフェデレーション学習。
非有限サム最適化のためのDecentralized STochastic Recursive MethodDESTRESSを開発した。
詳細な理論的および数値的な比較は、DESTRESSが事前の分散アルゴリズムにより改善されていることを示している。
論文 参考訳(メタデータ) (2021-10-04T03:17:41Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - FedSplit: An algorithmic framework for fast federated optimization [40.42352500741025]
本稿では,分散凸最小化を付加構造で解くアルゴリズムのクラスであるFedSplitを紹介する。
これらの手法は, 中間局所量の不正確な計算に対して, 確実に堅牢であることを示す。
論文 参考訳(メタデータ) (2020-05-11T16:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。