論文の概要: High Throughput Event Filtering: The Interpolation-based DIF Algorithm Hardware Architecture
- arxiv url: http://arxiv.org/abs/2506.05825v1
- Date: Fri, 06 Jun 2025 07:49:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.365556
- Title: High Throughput Event Filtering: The Interpolation-based DIF Algorithm Hardware Architecture
- Title(参考訳): 高スループットイベントフィルタリング:補間型DIFアルゴリズムハードウェアアーキテクチャ
- Authors: Marcin Kowalczyk, Tomasz Kryjak,
- Abstract要約: 本稿では、周波数重みフィルタを用いた距離ベース補間方式のハードウェアアーキテクチャを提案し、FPGAチップ上で実装する。
我々のアーキテクチャは、毎秒403.39万イベントのスループットを達成し、センサー解像度は1280 x 720と428.45 MEPS、解像度は640 x 480である。
AUROC(Area Under the Receiver Operating Characteristics)指数の平均値はデータセットによって0.844から0.999まで変化した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been rapid development in the field of event vision. It manifests itself both on the technical side, as better and better event sensors are available, and on the algorithmic side, as more and more applications of this technology are proposed and scientific papers are published. However, the data stream from these sensors typically contains a significant amount of noise, which varies depending on factors such as the degree of illumination in the observed scene or the temperature of the sensor. We propose a hardware architecture of the Distance-based Interpolation with Frequency Weights (DIF) filter and implement it on an FPGA chip. To evaluate the algorithm and compare it with other solutions, we have prepared a new high-resolution event dataset, which we are also releasing to the community. Our architecture achieved a throughput of 403.39 million events per second (MEPS) for a sensor resolution of 1280 x 720 and 428.45 MEPS for a resolution of 640 x 480. The average values of the Area Under the Receiver Operating Characteristic (AUROC) index ranged from 0.844 to 0.999, depending on the dataset, which is comparable to the state-of-the-art filtering solutions, but with much higher throughput and better operation over a wide range of noise levels.
- Abstract(参考訳): 近年,イベントビジョンの分野では急速な発展を遂げている。
技術面でも、より優れたイベントセンサーが利用可能であり、アルゴリズム面でも、この技術の応用がますます提案され、科学論文が公表されるにつれて、それ自体が技術面にも現れている。
しかし、これらのセンサから得られるデータストリームは、観測されたシーンの照明の度合いやセンサーの温度などによって変化する、かなりの量のノイズを含むのが一般的である。
本稿では、周波数重み付き距離ベース補間(DIF)フィルタのハードウェアアーキテクチャを提案し、FPGAチップ上で実装する。
アルゴリズムを評価し、他のソリューションと比較するため、我々は新しい高解像度イベントデータセットを作成しました。
我々のアーキテクチャは、毎秒403.39万イベント(MEPS)のスループットを実現し、センサー解像度は1280 x 720と428.45 MEPS、解像度は640 x 480である。
AUROC(Area Under the Receiver Operating Characteristics)インデックスの平均値はデータセットによって0.844から0.999の範囲であり、これは最先端のフィルタリングソリューションに匹敵するが、より高いスループットと幅広いノイズレベルの操作が可能である。
関連論文リスト
- DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition [51.96660522869841]
DailyDVS-200は、イベントベースのアクション認識コミュニティに適したベンチマークデータセットである。
実世界のシナリオで200のアクションカテゴリをカバーし、47人の参加者によって記録され、22,000以上のイベントシーケンスで構成されている。
DailyDVS-200には14の属性がアノテートされており、記録されたアクションの詳細なキャラクタリゼーションが保証されている。
論文 参考訳(メタデータ) (2024-07-06T15:25:10Z) - Q-Segment: Segmenting Images In-Sensor for Vessel-Based Medical
Diagnosis [13.018482089796159]
我々は、量子化されたリアルタイムセグメンテーションアルゴリズム「Q-Segment」を提案し、Sony IMX500を用いて、低消費電力エッジビジョンプラットフォーム上で包括的な評価を行う。
Q-セグメントは、センサー内での超低推論時間(0.23ms)と72mWの消費電力を実現している。
この研究は、エッジベースのイメージセグメンテーションに関する貴重な洞察をもたらし、低消費電力環境に適した効率的なアルゴリズムの基礎を築いた。
論文 参考訳(メタデータ) (2023-12-15T15:01:41Z) - The LuViRA Dataset: Synchronized Vision, Radio, and Audio Sensors for Indoor Localization [41.58739817444644]
データセットには、カラー画像、対応する深度マップ、慣性測定ユニット(IMU)読み取り、5Gの大規模マルチインプットとMIMO(Multiple-output)テストベッドとユーザ機器のチャネル応答が含まれる。
これらのセンサーを同期させて、すべてのデータが同時に記録されるようにします。
このデータセットの主な目的は、ローカライゼーションタスクに最もよく使用されるセンサーとのセンサー融合の研究を可能にすることである。
論文 参考訳(メタデータ) (2023-02-10T15:12:40Z) - Hardware architecture for high throughput event visual data filtering
with matrix of IIR filters algorithm [0.0]
ニューロモルフィック・ビジョンは、自動運転車の知覚システムに多くの応用がある、急速に成長する分野である。
センサの動作原理のため、イベントストリームにはかなりのノイズがあります。
本稿では、このタイプのノイズをフィルタするIIRフィルタ行列と、その加速度を許容するハードウェアアーキテクチャに基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-02T15:18:53Z) - hARMS: A Hardware Acceleration Architecture for Real-Time Event-Based
Optical Flow [0.0]
イベントベースの視覚センサは、視覚シーンの変化に基づいて、時間分解能の高い非同期イベントストリームを生成する。
イベントデータから光の流れを計算するための既存の解は、開口問題により運動の真の方向を捉えることができない。
本稿では,低消費電力な組込みプラットフォーム上での真の流れのリアルタイム計算を可能にするfARMSアルゴリズムのハードウェア実現について述べる。
論文 参考訳(メタデータ) (2021-12-13T16:27:17Z) - Are we ready for beyond-application high-volume data? The Reeds robot
perception benchmark dataset [3.781421673607643]
本稿ではロボット認識アルゴリズムの研究のためにReedsと呼ばれるデータセットを提案する。
このデータセットは、アプリケーション固有のソリューションをテストする環境を提供するのではなく、アルゴリズムに要求されるベンチマーク機会を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-16T23:21:42Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
入力キャンバスを小さく保ちながら、ある領域を弾性的に拡大する注意的アプローチを提案する。
提案手法は,高速R-CNNより高速かつ微調整の少ない検出APを高速化する。
Argoverse-HD と BDD100K の自律走行データセットでは,提案手法が標準の高速 R-CNN を超越した検出APを微調整なしで促進することを示す。
論文 参考訳(メタデータ) (2021-08-27T03:07:55Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
イベントカメラはバイオインスパイアされた視覚センサーで、ピクセルごとの明るさの変化を測定する。
これらは、低レイテンシ、高ダイナミックレンジ、高時間分解能、低消費電力など、従来のフレームベースのカメラよりも多くの利点を提供する。
イベントカメラを用いた3次元認識・ナビゲーションアルゴリズムの開発を促進するため,TUM-VIEデータセットを提案する。
論文 参考訳(メタデータ) (2021-08-16T19:53:56Z) - Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection [99.94079901071163]
本稿では、ダイナミックビジョンセンサ(DVS)を用いた歩行者検出のための新しいエンドツーエンドシステムを提案する。
我々は、複数のセンサがローカル処理ユニットにデータを送信し、検出アルゴリズムを実行するアプリケーションをターゲットにしている。
我々の検出器は450ミリ秒毎に検出を行うことができ、総合的なテストF1スコアは83%である。
論文 参考訳(メタデータ) (2020-04-03T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。