論文の概要: Wavelet-based Disentangled Adaptive Normalization for Non-stationary Times Series Forecasting
- arxiv url: http://arxiv.org/abs/2506.05857v1
- Date: Fri, 06 Jun 2025 08:25:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.37763
- Title: Wavelet-based Disentangled Adaptive Normalization for Non-stationary Times Series Forecasting
- Title(参考訳): 非定常時系列予測のためのウェーブレットに基づく不整合適応正規化
- Authors: Junpeng Lin, Tian Lan, Bo Zhang, Ke Lin, Dandan Miao, Huiru He, Jiantao Ye, Chen Zhang, Yan-fu Li,
- Abstract要約: 時系列予測における非定常性に対処するために、ウェーブレットに基づく不整合適応正規化(WDAN)を提案する。
WDANは離散ウェーブレット変換を用いて入力を低周波数トレンドと高周波変動に分解する。
複数のベンチマークの実験では、WDANは様々なバックボーンモデルにおける予測精度を一貫して改善している。
- 参考スコア(独自算出の注目度): 23.34966767653385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting non-stationary time series is a challenging task because their statistical properties often change over time, making it hard for deep models to generalize well. Instance-level normalization techniques can help address shifts in temporal distribution. However, most existing methods overlook the multi-component nature of time series, where different components exhibit distinct non-stationary behaviors. In this paper, we propose Wavelet-based Disentangled Adaptive Normalization (WDAN), a model-agnostic framework designed to address non-stationarity in time series forecasting. WDAN uses discrete wavelet transforms to break down the input into low-frequency trends and high-frequency fluctuations. It then applies tailored normalization strategies to each part. For trend components that exhibit strong non-stationarity, we apply first-order differencing to extract stable features used for predicting normalization parameters. Extensive experiments on multiple benchmarks demonstrate that WDAN consistently improves forecasting accuracy across various backbone model. Code is available at this repository: https://github.com/MonBG/WDAN.
- Abstract(参考訳): 非定常時系列の予測は、その統計的性質が時間とともに変化し、深層モデルの一般化が困難になるため、難しい課題である。
インスタンスレベルの正規化技術は、時間分布の変化に対処するのに役立つ。
しかし、既存のほとんどの手法は、異なる成分が異なる非定常挙動を示す時系列の多成分性を見落としている。
本稿では、時系列予測における非定常性に対処するモデルに依存しないフレームワークであるウェーブレットベースのディスタングル適応正規化(WDAN)を提案する。
WDANは離散ウェーブレット変換を用いて入力を低周波数トレンドと高周波変動に分解する。
その後、各部分に調整された正規化戦略を適用する。
強い非定常性を示す傾向成分に対しては、正規化パラメータの予測に使用される安定な特徴を抽出するために一階差分法を適用する。
複数のベンチマークでの大規模な実験により、WDANは様々なバックボーンモデルにおける予測精度を一貫して改善することを示した。
コードは、このリポジトリで入手できる。
関連論文リスト
- CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity [0.0]
本稿では,スタイル転送技術に触発された新しいアーキテクチャであるChoronoAdaptive Network (CANet)を紹介する。
CANetの中核は非定常適応正規化モジュールであり、スタイルブレンディングゲートと適応インスタンス正規化(AdaIN)をシームレスに統合する。
実世界のデータセットに関する実験は、CANetが最先端の手法よりも優れていることを検証し、MSEの42%、MAEの22%を達成している。
論文 参考訳(メタデータ) (2025-04-24T20:05:33Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための因果変換器Timer-XLを提案する。
大規模な事前トレーニングに基づいて、Timer-XLは最先端のゼロショット性能を達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Frequency Adaptive Normalization For Non-stationary Time Series Forecasting [7.881136718623066]
時系列予測は、トレンドと季節パターンを進化させる非定常データに対処する必要がある。
非定常性に対処するために、ある統計測度でこの傾向からの影響を軽減するために、最近インスタンス正規化が提案されている。
本稿では、周波数適応正規化(FAN)と呼ばれる新しいインスタンス正規化ソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-30T15:07:16Z) - Deep Frequency Derivative Learning for Non-stationary Time Series Forecasting [12.989064148254936]
非定常時系列予測のためのディープ周波数微分学習フレームワークDERITSを提案する。
具体的には、DERITSは、新しい可逆変換、すなわち周波数微分変換(FDT)に基づいて構築される。
論文 参考訳(メタデータ) (2024-06-29T17:56:59Z) - IN-Flow: Instance Normalization Flow for Non-stationary Time Series Forecasting [38.4809915448213]
固定統計量に依存しない時系列予測のための分離された定式化を提案する。
また、時系列変換のための新しい可逆ネットワークであるインスタンス正規化フロー(IN-Flow)を提案する。
論文 参考訳(メタデータ) (2024-01-30T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。