論文の概要: Additive decomposition of one-dimensional signals using Transformers
- arxiv url: http://arxiv.org/abs/2506.05942v1
- Date: Fri, 06 Jun 2025 10:09:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.418901
- Title: Additive decomposition of one-dimensional signals using Transformers
- Title(参考訳): 変圧器を用いた一次元信号の付加分解
- Authors: Samuele Salti, Andrea Pinto, Alessandro Lanza, Serena Morigi,
- Abstract要約: 一次元信号分解は、様々な科学分野において確立され広く使われている技術である。
近年の研究では、この問題に最新のディープラーニングモデルを適用すると、期待できる可能性を持った、エキサイティングで未探索な領域が現れることが示唆されている。
我々はTransformerアーキテクチャを利用して、信号を構成コンポーネントに分解する。
- 参考スコア(独自算出の注目度): 48.7025991956527
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One-dimensional signal decomposition is a well-established and widely used technique across various scientific fields. It serves as a highly valuable pre-processing step for data analysis. While traditional decomposition techniques often rely on mathematical models, recent research suggests that applying the latest deep learning models to this problem presents an exciting, unexplored area with promising potential. This work presents a novel method for the additive decomposition of one-dimensional signals. We leverage the Transformer architecture to decompose signals into their constituent components: piece-wise constant, smooth (low-frequency oscillatory), textured (high-frequency oscillatory), and a noise component. Our model, trained on synthetic data, achieves excellent accuracy in modeling and decomposing input signals from the same distribution, as demonstrated by the experimental results.
- Abstract(参考訳): 一次元信号分解は、様々な科学分野において確立され広く使われている技術である。
これは、データ分析のための非常に価値のある前処理ステップとして機能する。
従来の分解技術は数学的なモデルに頼っていることが多いが、最近の研究では、この問題に最新のディープラーニングモデルを適用すると、有望な可能性を持つエキサイティングで未探索な領域が現れることを示唆している。
本研究では, 1次元信号の加法分解法を提案する。
我々はTransformerアーキテクチャを利用して、信号の成分を分解する: ピースワイド定数、滑らかな(低周波発振)、テクスチャ化された(高周波発振)、ノイズ成分。
実験結果から示すように, 合成データに基づいて学習した本モデルは, 同一分布からの入力信号のモデリングおよび分解において, 優れた精度を実現する。
関連論文リスト
- Scintillation pulse characterization with spectrum-inspired temporal neural networks: case studies on particle detector signals [1.124958340749622]
本稿では,時系列解析に関するこれまでの研究に基づいて,シンチレーションパルスのキャラクタリゼーションに特化したネットワークアーキテクチャを提案する。
a)LUXダークマター検出器の設定によって生成されたシミュレーションデータと,(b)高速電子回路を用いた実験電気信号を用いて,NICA/MPD温度計のシンチレーション変動をエミュレートする。
論文 参考訳(メタデータ) (2024-10-09T02:44:53Z) - Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction [60.95625458395291]
計算トモグラフィー(CT)では、フォワードモデルは線形変換と、ベル=ランベルト法則に従って光の減衰に基づく指数非線形性によって構成される。
金属クラウンを用いた人間の頭蓋骨の商業的再構築と比較すると,このアプローチは金属人工物を減らすことが示されている。
論文 参考訳(メタデータ) (2023-10-06T00:47:57Z) - RRCNN: A novel signal decomposition approach based on recurrent residue
convolutional neural network [7.5123109191537205]
本稿では,ディープラーニングの枠組みに基づく非定常信号分解手法を提案する。
我々は、畳み込みニューラルネットワーク、残留構造、非線形活性化関数を用いて、信号の局所平均を革新的な方法で計算する。
実験では,局所的な平均値の計算と信号分解の2点から提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2023-07-04T13:53:01Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Dimensionality-Varying Diffusion Process [52.52681373641533]
拡散モデルは、信号破壊プロセスを逆転して新しいデータを生成することを学習する。
信号分解による前方拡散過程の理論的一般化を行う。
FFHQで訓練された拡散モデルのFIDを,52.40から10.46までの1024Times1024$解像度で改善する。
論文 参考訳(メタデータ) (2022-11-29T09:05:55Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Model discovery in the sparse sampling regime [0.0]
深層学習が部分微分方程式のモデル発見をいかに改善できるかを示す。
その結果、ディープラーニングに基づくモデル発見は、基礎となる方程式を復元することができる。
我々は合成集合と実験集合の両方について主張する。
論文 参考訳(メタデータ) (2021-05-02T06:27:05Z) - Iterative Correction of Sensor Degradation and a Bayesian Multi-Sensor
Data Fusion Method [0.0]
本稿では,劣化信号から地中構造信号を推定する新しい手法を提案する。
アルゴリズムは、2つの信号の繰り返し補正を行うことで乗算分解効果を学習する。
我々は理論的解析を含意し、ノイズレス測定モデルのための地上構造信号への収束性を証明する。
論文 参考訳(メタデータ) (2020-09-07T13:24:47Z) - Theory inspired deep network for instantaneous-frequency extraction and
signal components recovery from discrete blind-source data [1.6758573326215689]
本稿では、未知の信号成分を回収する逆問題と周波数の抽出について考察する。
既存の分解法やアルゴリズムでは、この逆問題を解くことはできない。
本稿では、ブラインドソース信号の非一様サンプリングが可能な離散サンプルセットを直接ベースとしたディープニューラルネットワークの合成を提案する。
論文 参考訳(メタデータ) (2020-01-31T18:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。