LaDEEP: A Deep Learning-based Surrogate Model for Large Deformation of Elastic-Plastic Solids
- URL: http://arxiv.org/abs/2506.06001v1
- Date: Fri, 06 Jun 2025 11:47:37 GMT
- Title: LaDEEP: A Deep Learning-based Surrogate Model for Large Deformation of Elastic-Plastic Solids
- Authors: Shilong Tao, Zhe Feng, Haonan Sun, Zhanxing Zhu, Yunhuai Liu,
- Abstract summary: We introduce LaDEEP, a deep learning-based surrogate model for textbfLarge textbfDeformation of textbfElastic-textbfPlastic Solids.<n>To characterize the physical process of the solid deformation, a two-stage Transformer-based module is designed to predict the deformation with the sequence of tokens as input.<n>LaDEEP achieves five magnitudes faster speed than finite element methods with a comparable accuracy, and gains 20.47% relative improvement on average compared to other deep learning baselines.
- Score: 21.697159152687288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific computing for large deformation of elastic-plastic solids is critical for numerous real-world applications. Classical numerical solvers rely primarily on local discrete linear approximation and are constrained by an inherent trade-off between accuracy and efficiency. Recently, deep learning models have achieved impressive progress in solving the continuum mechanism. While previous models have explored various architectures and constructed coefficient-solution mappings, they are designed for general instances without considering specific problem properties and hard to accurately handle with complex elastic-plastic solids involving contact, loading and unloading. In this work, we take stretch bending, a popular metal fabrication technique, as our case study and introduce LaDEEP, a deep learning-based surrogate model for \textbf{La}rge \textbf{De}formation of \textbf{E}lastic-\textbf{P}lastic Solids. We encode the partitioned regions of the involved slender solids into a token sequence to maintain their essential order property. To characterize the physical process of the solid deformation, a two-stage Transformer-based module is designed to predict the deformation with the sequence of tokens as input. Empirically, LaDEEP achieves five magnitudes faster speed than finite element methods with a comparable accuracy, and gains 20.47\% relative improvement on average compared to other deep learning baselines. We have also deployed our model into a real-world industrial production system, and it has shown remarkable performance in both accuracy and efficiency.
Related papers
- Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.<n>We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.<n>Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
arXiv Detail & Related papers (2025-03-24T19:12:39Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)<n>The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design [1.3980986259786223]
Auxetic structures exhibit effective elastic properties heavily influenced by their underlying structural geometry and base material properties.
periodic homogenization of auxetic unit cells can be used to investigate these properties, but it is computationally expensive and limits design space exploration.
This paper develops surrogate models for the real-time prediction of the effective elastic properties of auxetic unit cells.
arXiv Detail & Related papers (2024-08-24T09:20:33Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Transolver: A Fast Transformer Solver for PDEs on General Geometries [66.82060415622871]
We present Transolver, which learns intrinsic physical states hidden behind discretized geometries.
By calculating attention to physics-aware tokens encoded from slices, Transovler can effectively capture intricate physical correlations.
Transolver achieves consistent state-of-the-art with 22% relative gain across six standard benchmarks and also excels in large-scale industrial simulations.
arXiv Detail & Related papers (2024-02-04T06:37:38Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Meshless physics-informed deep learning method for three-dimensional
solid mechanics [0.0]
Deep learning and the collocation method are merged and used to solve partial differential equations describing structures' deformation.
We consider different types of materials: linear elasticity, hyperelasticity (neo-Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening.
arXiv Detail & Related papers (2020-12-02T21:40:37Z) - Learning to predict metal deformations in hot-rolling processes [59.00006390882099]
Hot-rolling is a metal forming process that produces a cross-section from an input through a sequence of deformations.
In current practice, the rolling sequence and the geometry of their rolls are needed to achieve a given cross-section.
We propose a supervised learning approach to predict a given by a set of rolls with given geometry.
arXiv Detail & Related papers (2020-07-22T13:33:44Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.