WoundAIssist: A Patient-Centered Mobile App for AI-Assisted Wound Care With Physicians in the Loop
- URL: http://arxiv.org/abs/2506.06104v1
- Date: Fri, 06 Jun 2025 14:10:32 GMT
- Title: WoundAIssist: A Patient-Centered Mobile App for AI-Assisted Wound Care With Physicians in the Loop
- Authors: Vanessa Borst, Anna Riedmann, Tassilo Dege, Konstantin Müller, Astrid Schmieder, Birgit Lugrin, Samuel Kounev,
- Abstract summary: We present WoundAIssist, a patient-centered, AI-driven mobile application designed to support telemedical wound care.<n>WoundAIssist enables patients to regularly document wounds at home via photographs and questionnaires.<n>An integrated lightweight deep learning model for on-device wound segmentation enables continuous monitoring of wound healing progression.
- Score: 2.3342755668932957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rising prevalence of chronic wounds, especially in aging populations, presents a significant healthcare challenge due to prolonged hospitalizations, elevated costs, and reduced patient quality of life. Traditional wound care is resource-intensive, requiring frequent in-person visits that strain both patients and healthcare professionals (HCPs). Therefore, we present WoundAIssist, a patient-centered, AI-driven mobile application designed to support telemedical wound care. WoundAIssist enables patients to regularly document wounds at home via photographs and questionnaires, while physicians remain actively engaged in the care process through remote monitoring and video consultations. A distinguishing feature is an integrated lightweight deep learning model for on-device wound segmentation, which, combined with patient-reported data, enables continuous monitoring of wound healing progression. Developed through an iterative, user-centered process involving both patients and domain experts, WoundAIssist prioritizes an user-friendly design, particularly for elderly patients. A conclusive usability study with patients and dermatologists reported excellent usability, good app quality, and favorable perceptions of the AI-driven wound recognition. Our main contribution is two-fold: (I) the implementation and (II) evaluation of WoundAIssist, an easy-to-use yet comprehensive telehealth solution designed to bridge the gap between patients and HCPs. Additionally, we synthesize design insights for remote patient monitoring apps, derived from over three years of interdisciplinary research, that may inform the development of similar digital health tools across clinical domains.
Related papers
- Designing AI Tools for Clinical Care Teams to Support Serious Illness Conversations with Older Adults in the Emergency Department [53.52248484568777]
The work contributes empirical understanding of ED-based serious illness conversations and provides design considerations for AI in high-stakes clinical environments.<n>We conducted interviews with two domain experts and nine ED clinical care team members.<n>We characterized a four-phase serious illness conversation workflow (identification, preparation, conduction, documentation) and identified key needs and challenges at each stage.<n>We present design guidelines for AI tools supporting SIC that fit within existing clinical practices.
arXiv Detail & Related papers (2025-05-30T21:15:57Z) - Integrating Generative Artificial Intelligence in ADRD: A Framework for Streamlining Diagnosis and Care in Neurodegenerative Diseases [0.0]
We propose that large language models (LLMs) offer more immediately practical applications by enhancing clinicians' capabilities.<n>We present a framework for responsible AI integration that leverages LLMs' ability to communicate effectively with both patients and providers.<n>This approach prioritizes standardized, high-quality data collection to enable a system that learns from every patient encounter.
arXiv Detail & Related papers (2025-02-06T19:09:11Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.7503982558916906]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
This study aims to do a comprehensive review of RPM systems including adopted advanced technologies, AI impact on RPM, challenges and trends in AI-enabled RPM.
The role of AI in RPM ranges from physical activity classification to chronic disease monitoring and vital signs monitoring in emergency settings.
This review results show that AI-enabled RPM architectures have transformed healthcare monitoring applications.
arXiv Detail & Related papers (2023-01-19T06:22:14Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Artificial Intelligence Decision Support for Medical Triage [0.0]
We developed a triage system, now certified and in use at the largest European telemedicine provider.
The system evaluates care alternatives through interactions with patients via a mobile application.
Reasoning on an initial set of provided symptoms, the triage application generates AI-powered, personalized questions to better characterize the problem.
arXiv Detail & Related papers (2020-11-09T16:45:01Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.