Scientific machine learning in Hydrology: a unified perspective
- URL: http://arxiv.org/abs/2506.06308v1
- Date: Sat, 24 May 2025 15:21:10 GMT
- Title: Scientific machine learning in Hydrology: a unified perspective
- Authors: Adoubi Vincent De Paul Adombi,
- Abstract summary: Scientific machine learning (SciML) provides a structured approach to integrating physical knowledge into data-driven modeling.<n>Multiple methodological families have emerged, including physics-informed machine learning, physics-guided machine learning, hybrid physics-machine learning, and data-driven physics discovery.<n>This review proposes a unified methodological framework for each SciML family, bringing together contributions into a coherent structure that fosters conceptual clarity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific machine learning (SciML) provides a structured approach to integrating physical knowledge into data-driven modeling, offering significant potential for advancing hydrological research. In recent years, multiple methodological families have emerged, including physics-informed machine learning, physics-guided machine learning, hybrid physics-machine learning, and data-driven physics discovery. Within each of these families, a proliferation of heterogeneous approaches has developed independently, often without conceptual coordination. This fragmentation complicates the assessment of methodological novelty and makes it difficult to identify where meaningful advances can still be made in the absence of a unified conceptual framework. This review, the first focused overview of SciML in hydrology, addresses these limitations by proposing a unified methodological framework for each SciML family, bringing together representative contributions into a coherent structure that fosters conceptual clarity and supports cumulative progress in hydrological modeling. Finally, we highlight the limitations and future opportunities of each unified family to guide systematic research in hydrology, where these methods remain underutilized.
Related papers
- Multiscale geometrical and topological learning in the analysis of soft matter collective dynamics [0.4440432588828829]
Joint geometric and topological data analysis (TDA) offers powerful framework for investigating such systems.<n>The method based on the analysis of fields generated from images of skyrmion ensembles offers insights into the nonlinear physical mechanisms of the system's response to external stimuli.
arXiv Detail & Related papers (2025-07-28T18:40:37Z) - Advances in Protein Representation Learning: Methods, Applications, and Future Directions [1.7034813545878589]
Proteins are complex biomolecules that play a central role in various biological processes.<n>Protein Representation Learning (PRL) has emerged as a transformative approach, enabling the extraction of meaningful computational representations from protein data.
arXiv Detail & Related papers (2025-03-20T19:16:54Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.<n>Key theoretical contribution is the structural sparsity of causal connections between modalities.<n>Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems [1.1510009152620668]
We propose a physically-interpretable Mass Conserving Perceptron (MCP) as a way to bridge the gap between PC-based and ML-based modeling approaches.
The MCP exploits the inherent isomorphism between the directed graph structures underlying both PC models and GRNNs to explicitly represent the mass-conserving nature of physical processes.
arXiv Detail & Related papers (2023-10-12T18:09:33Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
We propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies.
Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 46 diverse datasets.
arXiv Detail & Related papers (2023-06-15T05:37:25Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Integrating Scientific Knowledge with Machine Learning for Engineering
and Environmental Systems [5.23043130762977]
There is a growing consensus that solutions to complex science and engineering problems require novel methodologies.
This paper provides a structured overview of such techniques.
We then provide a taxonomy of these existing techniques, which uncovers knowledge gaps and potential crossovers of methods between disciplines.
arXiv Detail & Related papers (2020-03-10T18:24:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.