論文の概要: Human and AI collaboration in Fitness Education:A Longitudinal Study with a Pilates Instructor
- arxiv url: http://arxiv.org/abs/2506.06383v1
- Date: Thu, 05 Jun 2025 04:04:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.247245
- Title: Human and AI collaboration in Fitness Education:A Longitudinal Study with a Pilates Instructor
- Title(参考訳): フィットネス教育における人間とAIの連携:ピラティスインストラクタを用いた縦断的研究
- Authors: Qian Huang, King Wang Poon,
- Abstract要約: 本研究では,Picatesインストラクターによる1年間の質的ケーススタディを通じて,フィットネス教育における人間とAIの連携について検討した。
研究員はインストラクタークラスに参加し、半構造化インタビューを行い、生成型AIをクラス計画と授業に組み込む方法について調査した。
- 参考スコア(独自算出の注目度): 6.648201217305476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence is poised to transform teaching and coaching practices,yet its optimal role alongside human expertise remains unclear.This study investigates human and AI collaboration in fitness education through a one year qualitative case study with a Pilates instructor.The researcher participated in the instructor classes and conducted biweekly semi structured interviews to explore how generative AI could be integrated into class planning and instruction.
- Abstract(参考訳): 人工知能は教育とコーチングの実践を変革しようとしているが、人間の専門性とともに最適な役割を担っている。この研究は、ピラティスのインストラクターと1年間の質的なケーススタディを通じて、フィットネス教育における人間とAIのコラボレーションを調査する。研究者はインストラクタークラスに参加し、2週間にわたって半構造化されたインタビューを行い、生成AIをクラス計画とインストラクターに組み込む方法について調査した。
関連論文リスト
- CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
我々は,リアルタイム意思決定シナリオにおける人間-AIコラボレーション研究を支援するプラットフォームCREWを紹介する。
これには、認知研究のための事前構築されたタスクや、モジュール設計から拡張可能なポテンシャルを備えたヒューマンAIコラボレーションが含まれます。
CREWは、最先端のアルゴリズムとよく訓練されたベースラインを使用して、リアルタイムの人間誘導型強化学習エージェントをベンチマークする。
論文 参考訳(メタデータ) (2024-07-31T21:43:55Z) - Towards Effective Human-AI Decision-Making: The Role of Human Learning
in Appropriate Reliance on AI Advice [3.595471754135419]
参加者100名を対象にした実験において,学習と適切な信頼の関係を示す。
本研究は,人間とAIの意思決定を効果的に設計するために,信頼度を分析し,意味を導き出すための基本的な概念を提供する。
論文 参考訳(メタデータ) (2023-10-03T14:51:53Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
本研究は、強化学習研究と実験のための新しいプラットフォームであるDIAMBRA Arenaを提示する。
高品質な環境のコレクションが,OpenAI Gym標準に完全に準拠したPython APIを公開している。
これらは、離散的なアクションと観測を生のピクセルと追加の数値で構成したエピソディックなタスクである。
論文 参考訳(メタデータ) (2022-10-19T14:39:10Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z) - Designing for human-AI complementarity in K-12 education [2.741266294612776]
教師がAI支援教室で生徒を助けるのに役立つスマートグラス「ルミロ」の反復設計と評価を紹介します。
K-12教室で実施したフィールドスタディの結果,教師とAI教師が協力して働くと,学生がより多くを学ぶことが示唆された。
論文 参考訳(メタデータ) (2021-04-02T22:38:50Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
香港大学(CUHK)-Jockey Club AI for the Future Project(AI4Future)は、第3次教育のためのAIカリキュラムを共同開発した。
工学と教育を専門とする14人の教授が、6つの中学校の17の校長と教師と協力してカリキュラムを共同作成した。
共同創造プロセスは、AIにおける教師の知識を高める様々なリソースを生み出し、その課題を教室に持ち込むための教師の自主性を育んだ。
論文 参考訳(メタデータ) (2021-01-19T11:26:19Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。