論文の概要: Human-Centered AI for Data Science: A Systematic Approach
- arxiv url: http://arxiv.org/abs/2110.01108v1
- Date: Sun, 3 Oct 2021 21:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:45:18.819516
- Title: Human-Centered AI for Data Science: A Systematic Approach
- Title(参考訳): データサイエンスのための人間中心AI:システム的アプローチ
- Authors: Dakuo Wang, Xiaojuan Ma, April Yi Wang
- Abstract要約: HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
- 参考スコア(独自算出の注目度): 48.71756559152512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-Centered AI (HCAI) refers to the research effort that aims to design
and implement AI techniques to support various human tasks, while taking human
needs into consideration and preserving human control. In this short position
paper, we illustrate how we approach HCAI using a series of research projects
around Data Science (DS) works as a case study. The AI techniques built for
supporting DS works are collectively referred to as AutoML systems, and their
goals are to automate some parts of the DS workflow. We illustrate a three-step
systematical research approach(i.e., explore, build, and integrate) and four
practical ways of implementation for HCAI systems. We argue that our work is a
cornerstone towards the ultimate future of Human-AI Collaboration for DS and
beyond, where AI and humans can take complementary and indispensable roles to
achieve a better outcome and experience.
- Abstract(参考訳): 人間中心型AI(Human-Centered AI, HCAI)は、AI技術の設計と実装を目的とした研究活動である。
本稿では,データサイエンス(DS)に関する一連の研究プロジェクトを用いてHCAIにアプローチする方法を事例研究として紹介する。
DSワークをサポートするために構築されたAI技術は、まとめてAutoMLシステムと呼ばれ、彼らの目標はDSワークフローの一部を自動化することである。
本稿では,HCAIシステムの実装方法として,3段階の体系的研究手法(すなわち,探索,構築,統合)と4つの実践的方法を紹介する。
私たちは、私たちの仕事は、より優れた成果と経験を達成するために、AIと人間が相補的で必要不可欠な役割を担えるDSおよびそれ以上のためのヒューマンAIコラボレーションの究極の未来に向けた基盤である、と論じています。
関連論文リスト
- The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
論文 参考訳(メタデータ) (2024-08-23T01:00:32Z) - CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
我々は、人間とAIのコラボレーション研究を促進するプラットフォームCREWを紹介し、複数の科学分野から協力する。
これには、認知研究のための事前構築されたタスクや、モジュール設計から拡張可能なポテンシャルを備えたヒューマンAIコラボレーションが含まれます。
CREWは、最先端のアルゴリズムとよく訓練されたベースラインを使用して、リアルタイムの人間誘導型強化学習エージェントをベンチマークする。
論文 参考訳(メタデータ) (2024-07-31T21:43:55Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service
Co-Creation with LLM-Based Agents [16.560339524456268]
この研究は、に関心のあるサービスプロバイダが、その実践者やより広範なコミュニティに対して、Large Language Models(LLM)技術が統合されるかどうかを判断するための原動力となる。
LLMをベースとしたサービス共同作成ツールであるCoAGentを通じて,非AI専門家とAIの相互学習の旅について検討する。
論文 参考訳(メタデータ) (2023-10-23T16:11:48Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:26:38Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - From Human-Computer Interaction to Human-AI Interaction: New Challenges
and Opportunities for Enabling Human-Centered AI [7.3800748017024755]
我々は、AI技術の特徴と非AIコンピューティングシステムとAIシステムの違いに焦点を当てる。
人とAIの相互作用(HAII)の研究と応用を学際的なコラボレーションとして推進します。
論文 参考訳(メタデータ) (2021-05-12T04:30:45Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。