論文の概要: Fake Friends and Sponsored Ads: The Risks of Advertising in Conversational Search
- arxiv url: http://arxiv.org/abs/2506.06447v1
- Date: Fri, 06 Jun 2025 18:09:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.278649
- Title: Fake Friends and Sponsored Ads: The Risks of Advertising in Conversational Search
- Title(参考訳): 偽友達とスポンサー広告:会話検索における広告のリスク
- Authors: Jacob Erickson,
- Abstract要約: 本稿では,対話型検索における広告の将来を批判的に検討する。
これは、この分野で広告が取るであろう形態の概要を提供する。
また、会話エージェントが他の目的を達成するために不整合のユーザ信頼を利用するという「フェイクフレンドジレンマ」も導入されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Digital commerce thrives on advertising, with many of the largest technology companies relying on it as a significant source of revenue. However, in the context of information-seeking behavior, such as search, advertising may degrade the user experience by lowering search quality, misusing user data for inappropriate personalization, potentially misleading individuals, or even leading them toward harm. These challenges remain significant as conversational search technologies, such as ChatGPT, become widespread. This paper critically examines the future of advertising in conversational search, utilizing several speculative examples to illustrate the potential risks posed to users who seek guidance on sensitive topics. Additionally, it provides an overview of the forms that advertising might take in this space and introduces the "fake friend dilemma," the idea that a conversational agent may exploit unaligned user trust to achieve other objectives. This study presents a provocative discussion on the future of online advertising in the space of conversational search and ends with a call to action.
- Abstract(参考訳): デジタルコマースは広告に力を入れており、大手テクノロジー企業は広告を重要な収入源として頼りにしている。
しかし、検索などの情報検索行動の文脈では、広告は、検索品質を低下させ、不適切なパーソナライゼーションのためにユーザーデータを誤用したり、個人を誤解させたり、害に導くことによって、ユーザー体験を低下させる可能性がある。
ChatGPTのような会話検索技術が普及するにつれて、これらの課題は依然として重要なままである。
本稿では,対話型検索における広告の将来を批判的に検討し,センシティブなトピックに関するガイダンスを求めるユーザに対して生じる潜在的なリスクを,いくつかの投機的な例を用いて説明する。
さらに、この分野で広告がもたらすであろう形態の概要を提供し、会話エージェントが他の目的を達成するために不整合なユーザー信頼を利用するという「偽友ジレンマ」を導入している。
本研究では,対話型検索の領域におけるオンライン広告の将来について挑発的な議論を行い,行動を呼び掛けて終了する。
関連論文リスト
- Digital Advertising in a Post-Cookie World: Charting the Impact of Google's Topics API [0.38233569758620056]
GoogleのTopics APIをデジタル広告エコシステムに統合することは、プライバシを重視した広告プラクティスへの大きなシフトである。
本稿では、競合のダイナミクスと広告空間のアクセシビリティに焦点をあて、広告ネットワークにトピックAPIを実装することの意味を分析する。
論文 参考訳(メタデータ) (2024-09-21T09:04:16Z) - PropaInsight: Toward Deeper Understanding of Propaganda in Terms of Techniques, Appeals, and Intent [71.20471076045916]
プロパガンダは世論の形成と偽情報の拡散に重要な役割を果たしている。
Propainsightはプロパガンダを体系的に、技術、覚醒的魅力、そして根底にある意図に分解する。
Propagazeは、人間の注釈付きデータと高品質な合成データを組み合わせる。
論文 参考訳(メタデータ) (2024-09-19T06:28:18Z) - Evaluating Robustness of Generative Search Engine on Adversarial Factual Questions [89.35345649303451]
生成検索エンジンは、人々がオンラインで情報を求める方法を変える可能性を秘めている。
しかし,既存の大規模言語モデル(LLM)が支援する生成検索エンジンからの応答は必ずしも正確ではない。
検索強化世代は、敵がシステム全体を回避できるため、安全上の懸念を増す。
論文 参考訳(メタデータ) (2024-02-25T11:22:19Z) - Detecting Generated Native Ads in Conversational Search [33.5694271503764]
YouChatやMicrosoft Copilotといった会話型検索エンジンは、大きな言語モデル(LLM)を使用してクエリに対する応答を生成する。
同じテクノロジーが生成されたレスポンスに広告を挿入するのも、ほんの少しのステップにすぎない。
インサート広告は、ネイティブ広告やプロダクトの配置を思い出させるだろう。
論文 参考訳(メタデータ) (2024-02-07T14:22:51Z) - Social Commonsense-Guided Search Query Generation for Open-Domain
Knowledge-Powered Conversations [66.16863141262506]
本稿では,ソーシャルコモンセンスによってガイドされたインターネット検索クエリ生成に焦点を当てた新しいアプローチを提案する。
提案フレームワークは,トピックトラッキング,コモンセンス応答生成,命令駆動クエリ生成を統合することで,受動的ユーザインタラクションに対処する。
論文 参考訳(メタデータ) (2023-10-22T16:14:56Z) - The Manipulation Problem: Conversational AI as a Threat to Epistemic
Agency [0.0]
会話型AIの技術は、過去18ヶ月で大きな進歩を遂げてきた。
会話エージェントは 近い将来 配備される可能性が高い 標的となる影響目標を 追求するように設計されている
AI操作問題(AI Manipulation Problem)と呼ばれることもあるが、消費者が捕食的AIエージェントとのリアルタイム対話を無意識に行うというリスクが表面化している。
論文 参考訳(メタデータ) (2023-06-19T04:09:16Z) - AI-Driven Contextual Advertising: A Technology Report and Implication
Analysis [0.0]
プログラム広告はデジタル広告空間の自動オークションである。
文脈広告に対する関心は、部分的には現在の個人データへの依存に対する反作用である。
人工知能(AI)の発展により、コンテキストのより深いセマンティックな理解が可能になる。
論文 参考訳(メタデータ) (2022-05-02T13:44:58Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - An Empirical Study of In-App Advertising Issues Based on Large Scale App
Review Analysis [67.58267006314415]
われわれは,App StoreとGoogle Playの広告関連ユーザフィードバックに関する大規模分析を行った。
広告関連レビュー36,309件の統計分析から,利用者は使用中のユニーク広告数や広告表示頻度を最も気にしていることがわかった。
いくつかの広告イシュータイプは、他の広告イシューよりも開発者によって迅速に対処される。
論文 参考訳(メタデータ) (2020-08-22T05:38:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。