論文の概要: AS-ASR: A Lightweight Framework for Aphasia-Specific Automatic Speech Recognition
- arxiv url: http://arxiv.org/abs/2506.06566v1
- Date: Fri, 06 Jun 2025 22:38:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.332145
- Title: AS-ASR: A Lightweight Framework for Aphasia-Specific Automatic Speech Recognition
- Title(参考訳): AS-ASR:失語症特異的音声認識のための軽量フレームワーク
- Authors: Chen Bao, Chuanbing Huo, Qinyu Chen, Chang Gao,
- Abstract要約: AS-ASRはWhisper-tinyに基づく軽量な失語特異的音声認識フレームワークである。
提案手法は,様々な比率で標準音声と失語音声を体系的に組み合わせ,ロバストな一般化を実現する。
- 参考スコア(独自算出の注目度): 4.70623940988391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes AS-ASR, a lightweight aphasia-specific speech recognition framework based on Whisper-tiny, tailored for low-resource deployment on edge devices. Our approach introduces a hybrid training strategy that systematically combines standard and aphasic speech at varying ratios, enabling robust generalization, and a GPT-4-based reference enhancement method that refines noisy aphasic transcripts, improving supervision quality. We conduct extensive experiments across multiple data mixing configurations and evaluation settings. Results show that our fine-tuned model significantly outperforms the zero-shot baseline, reducing WER on aphasic speech by over 30% while preserving performance on standard speech. The proposed framework offers a scalable, efficient solution for real-world disordered speech recognition.
- Abstract(参考訳): 本稿では,Whisper-tinyをベースとした軽量な失語症特異的音声認識フレームワークAS-ASRを提案する。
提案手法では,様々な比率で標準音声とアプシック音声を体系的に組み合わせ,堅牢な一般化を可能にするハイブリッドトレーニング戦略と,ノイズの多いアプシック文字を洗練し,監督品質を向上させるGPT-4ベースの参照拡張手法を提案する。
複数のデータ混合設定と評価設定にまたがって広範な実験を行う。
その結果,提案モデルがゼロショットベースラインを著しく上回り,標準音声の性能を維持しつつ,失語音声のWERを30%以上削減できることがわかった。
提案するフレームワークは、実世界の無秩序音声認識のためのスケーラブルで効率的なソリューションを提供する。
関連論文リスト
- A unified multichannel far-field speech recognition system: combining
neural beamforming with attention based end-to-end model [14.795953417531907]
本稿では,ニューラルビームフォーミングとトランスフォーマーをベースとしたリステン,スペル,アトンド(LAS)音声認識システムを組み合わせた多チャンネル遠距離音声認識システムを提案する。
提案手法は, 強いベースラインに比べて19.26%向上した。
論文 参考訳(メタデータ) (2024-01-05T07:11:13Z) - Advancing Test-Time Adaptation in Wild Acoustic Test Settings [26.05732574338255]
音声信号は短期的な一貫性に従い、特別な適応戦略を必要とする。
本研究では,ASR微調整音響基礎モデルに適した新しい音響TTA法を提案する。
本手法は,様々な音環境下での既存のベースラインよりも優れる。
論文 参考訳(メタデータ) (2023-10-14T06:22:08Z) - DDTSE: Discriminative Diffusion Model for Target Speech Extraction [62.422291953387955]
ターゲット音声抽出(DDTSE)のための識別拡散モデルを提案する。
拡散モデルと同じ前方プロセスを適用し, 判別法と同様の復元損失を利用する。
モデルトレーニング中に推論過程をエミュレートするための2段階のトレーニング戦略を考案する。
論文 参考訳(メタデータ) (2023-09-25T04:58:38Z) - High-Quality Automatic Voice Over with Accurate Alignment: Supervision
through Self-Supervised Discrete Speech Units [69.06657692891447]
本稿では,自己教師付き離散音声単位予測の学習目的を活用した新しいAVO手法を提案する。
実験結果から,提案手法は有意な唇音声同期と高音質を実現することが示された。
論文 参考訳(メタデータ) (2023-06-29T15:02:22Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
この研究は、初めて合成に基づくアプローチがこの問題にうまく対応できることを示した。
具体的には,離散シンボルの認識に基づく音声分離/強調モデルを提案する。
離散シンボルの入力による合成モデルを利用することで、離散シンボル列の予測後、各ターゲット音声を再合成することができる。
論文 参考訳(メタデータ) (2021-12-17T08:35:40Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - Gated Recurrent Fusion with Joint Training Framework for Robust
End-to-End Speech Recognition [64.9317368575585]
本稿では,ロバスト・エンド・ツー・エンドASRのためのジョイント・トレーニング・フレームワークを用いたゲート・リカレント・フュージョン(GRF)法を提案する。
GRFアルゴリズムはノイズと拡張された特徴を動的に組み合わせるために使用される。
提案手法は従来の関節強化・変圧器法に比べて10.04%の相対的文字誤り率(CER)低減を実現する。
論文 参考訳(メタデータ) (2020-11-09T08:52:05Z) - An Effective Contextual Language Modeling Framework for Speech
Summarization with Augmented Features [13.97006782398121]
変換器による双方向表現(BERT)モデルが提案され,多くの自然言語処理タスクにおいて記録破りの成功を収めた。
本研究では,不完全な自動音声認識によるネガティブな影響を軽減するために,信頼度スコアを文表現に組み込むことを検討した。
提案手法の有効性をベンチマークデータセットで検証する。
論文 参考訳(メタデータ) (2020-06-01T18:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。