Quantile Regression with Large Language Models for Price Prediction
- URL: http://arxiv.org/abs/2506.06657v1
- Date: Sat, 07 Jun 2025 04:19:28 GMT
- Title: Quantile Regression with Large Language Models for Price Prediction
- Authors: Nikhita Vedula, Dushyanta Dhyani, Laleh Jalali, Boris Oreshkin, Mohsen Bayati, Shervin Malmasi,
- Abstract summary: Large Language Models (LLMs) have shown promise in structured prediction tasks, including regression.<n>We propose a novel quantile regression approach that enables LLMs to produce full predictive distributions.<n>A Mistral-7B model fine-tuned with quantile heads significantly outperforms traditional approaches for both point and distributional estimations.
- Score: 15.277244542405345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown promise in structured prediction tasks, including regression, but existing approaches primarily focus on point estimates and lack systematic comparison across different methods. We investigate probabilistic regression using LLMs for unstructured inputs, addressing challenging text-to-distribution prediction tasks such as price estimation where both nuanced text understanding and uncertainty quantification are critical. We propose a novel quantile regression approach that enables LLMs to produce full predictive distributions, improving upon traditional point estimates. Through extensive experiments across three diverse price prediction datasets, we demonstrate that a Mistral-7B model fine-tuned with quantile heads significantly outperforms traditional approaches for both point and distributional estimations, as measured by three established metrics each for prediction accuracy and distributional calibration. Our systematic comparison of LLM approaches, model architectures, training approaches, and data scaling reveals that Mistral-7B consistently outperforms encoder architectures, embedding-based methods, and few-shot learning methods. Our experiments also reveal the effectiveness of LLM-assisted label correction in achieving human-level accuracy without systematic bias. Our curated datasets are made available at https://github.com/vnik18/llm-price-quantile-reg/ to support future research.
Related papers
- An Information-Theoretic Perspective on Multi-LLM Uncertainty Estimation [7.018119896897734]
Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings.<n>We propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs.<n>Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and naive ensemble baselines.
arXiv Detail & Related papers (2025-07-09T19:13:25Z) - Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training [51.41246396610475]
This paper aims to predict performance in closed-book question answering (QA) without the help of external tools.<n>We conduct large-scale retrieval and semantic analysis across the pre-training corpora of 21 publicly available and 3 custom-trained large language models.<n>Building on these foundations, we propose Size-dependent Mutual Information (SMI), an information-theoretic metric that linearly correlates pre-training data characteristics.
arXiv Detail & Related papers (2025-02-06T13:23:53Z) - AutoElicit: Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
We introduce AutoElicit to extract knowledge from large language models and construct priors for predictive models.<n>We show these priors are informative and can be refined using natural language.<n>We find that AutoElicit yields priors that can substantially reduce error over uninformative priors, using fewer labels, and consistently outperform in-context learning.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more computation-efficient metric for performance estimation.<n>We present FLP-M, a fundamental approach for performance prediction that addresses the practical need to integrate datasets from multiple sources during pre-training.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Mixed Semi-Supervised Generalized-Linear-Regression with Applications to Deep-Learning and Interpolators [6.537685198688539]
We present a methodology for using unlabeled data to design semi supervised learning (SSL) methods.<n>We include in each of them a mixing parameter $alpha$, controlling the weight given to the unlabeled data.<n>We demonstrate the effectiveness of our methodology in delivering substantial improvement compared to the standard supervised models.
arXiv Detail & Related papers (2023-02-19T09:55:18Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
arXiv Detail & Related papers (2022-12-20T00:06:28Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.