Interpretation of Deep Learning Model in Embryo Selection for In Vitro Fertilization (IVF) Treatment
- URL: http://arxiv.org/abs/2506.06680v2
- Date: Mon, 23 Jun 2025 05:29:59 GMT
- Title: Interpretation of Deep Learning Model in Embryo Selection for In Vitro Fertilization (IVF) Treatment
- Authors: Radha Kodali, Venkata Rao Dhulipalla, Venkata Siva Kishor Tatavarty, Madhavi Nadakuditi, Bharadwaj Thiruveedhula, Suryanarayana Gunnam, Durga Prasad Bavirisetti,
- Abstract summary: Expert embryologists conventionally grade embryos by reviewing blastocyst images to select the most optimal for transfer.<n>In this study, we introduce an explainable artificial intelligence framework for classifying embryos, employing a fusion of convolutional neural network (CNN) and long short-term memory (LSTM) architecture.<n>Our model achieves high accuracy in embryo classification while maintaining interpretability through XAI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infertility has a considerable impact on individuals' quality of life, affecting them socially and psychologically, with projections indicating a rise in the upcoming years. In vitro fertilization (IVF) emerges as one of the primary techniques within economically developed nations, employed to address the rising problem of low fertility. Expert embryologists conventionally grade embryos by reviewing blastocyst images to select the most optimal for transfer, yet this process is time-consuming and lacks efficiency. Blastocyst images provide a valuable resource for assessing embryo viability. In this study, we introduce an explainable artificial intelligence (XAI) framework for classifying embryos, employing a fusion of convolutional neural network (CNN) and long short-term memory (LSTM) architecture, referred to as CNN-LSTM. Utilizing deep learning, our model achieves high accuracy in embryo classification while maintaining interpretability through XAI.
Related papers
- Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.<n>We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.<n>Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - An Integrated Optimization and Deep Learning Pipeline for Predicting Live Birth Success in IVF Using Feature Optimization and Transformer-Based Models [0.0]
This study develops a robust artificial intelligence pipeline aimed at predicting live birth outcomes in IVF treatments.<n>The pipeline uses anonymized data from 2010 to 2018 from the Human Fertilization and Embryology Authority (HFEA)
arXiv Detail & Related papers (2024-12-27T15:46:59Z) - Merging synthetic and real embryo data for advanced AI predictions [69.07284335967019]
We train two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages.<n>These were combined with real images to train classification models for embryo cell stage prediction.<n>Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data.
arXiv Detail & Related papers (2024-12-02T08:24:49Z) - Multimodal Learning for Embryo Viability Prediction in Clinical IVF [24.257300904706902]
In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy.
Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy.
This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process.
arXiv Detail & Related papers (2024-10-21T01:58:26Z) - Predicting Adverse Neonatal Outcomes for Preterm Neonates with
Multi-Task Learning [51.487856868285995]
We first analyze the correlations between three adverse neonatal outcomes and then formulate the diagnosis of multiple neonatal outcomes as a multi-task learning (MTL) problem.
In particular, the MTL framework contains shared hidden layers and multiple task-specific branches.
arXiv Detail & Related papers (2023-03-28T00:44:06Z) - Developmental Stage Classification of EmbryosUsing Two-Stream Neural
Network with Linear-Chain Conditional Random Field [74.53314729742966]
We propose a two-stream model for developmental stage classification.
Unlike previous methods, our two-stream model accepts both temporal and image information.
We demonstrate our algorithm on two time-lapse embryo video datasets.
arXiv Detail & Related papers (2021-07-13T19:56:01Z) - Robust and generalizable embryo selection based on artificial
intelligence and time-lapse image sequences [0.0]
We investigate how a deep learning-based embryo selection model using only time-lapse image sequences performs across different patient ages and clinical conditions.
The model was trained and evaluated based on a large dataset from 18 IVF centers consisting of 115,832 embryos.
The fully automated iDAScore v1.0 model was shown to perform at least as good as a state-of-the-art manual embryo selection model.
arXiv Detail & Related papers (2021-03-12T13:36:30Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - Evaluation of deep convolutional neural networks in classifying human
embryo images based on their morphological quality [1.6753684438635652]
Convolutional neural networks (CNNs) are powerful, promising algorithms with significant potential for accurate classifications.
Xception performed the best in differentiating between the embryos based on their morphological quality.
arXiv Detail & Related papers (2020-05-21T21:21:22Z) - Deep learning mediated single time-point image-based prediction of
embryo developmental outcome at the cleavage stage [1.6753684438635652]
Cleavage stage transfers are beneficial for patients with poor prognosis and at fertility centers in resource-limited settings.
Time-lapse imaging systems have been proposed as possible solutions, but they are cost-prohibitive and require bulky and expensive hardware.
Here, we report an automated system for classification and selection of human embryos at the cleavage stage using a trained CNN combined with a genetic algorithm.
arXiv Detail & Related papers (2020-05-21T21:21:15Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.