A Concise Primer on Solid-State Quantum Emitters
- URL: http://arxiv.org/abs/2506.06684v1
- Date: Sat, 07 Jun 2025 06:47:50 GMT
- Title: A Concise Primer on Solid-State Quantum Emitters
- Authors: Shicheng Yu, Xiaojie Zhang, Xia Lei, Liang Zhai,
- Abstract summary: Quantum emitters serve as essential on-demand photonic resources.<n>We highlight three material platforms: quantum dots, defect centres in diamond, and defect centres in silicon carbide.<n>We discuss their advancements in quantum applications, including quantum communication, computation, and sensing.
- Score: 5.058205542605482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum emitters serve as essential on-demand photonic resources, generating quantum states of light such as single photons and entangled photon pairs while serving as interfaces between light and matter. Buried in the solid state, quantum emitters enable a straightforward adoption of advanced nanofabrication techniques, facilitating precise engineering of their photonic environment for scalable quantum technologies. In this review, we introduce the fundamentals of quantum emitters and the key metrics characterising their performance. We highlight three material platforms: quantum dots, defect centres in diamond, and defect centres in silicon carbide. We summarise the recent developments of these platforms and discuss their advancements in quantum applications, including quantum communication, computation, and sensing. Finally, we provide a comparison across the three platforms, along with an outlook on future directions and potential challenges.
Related papers
- Scalable quantum interference in integrated lithium niobate nanophotonics [40.13294159814764]
integrated lithium niobate is a prime contender for a monolithic quantum photonics platform.<n>We show bosonic interference between indistinguishable photons, a crucial interaction for many photonic quantum computing protocols.
arXiv Detail & Related papers (2025-06-25T15:06:53Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Solid-state single-photon sources: recent advances for novel quantum
materials [0.0]
We focus on three specific solid-state platforms: single emitters in monolayers of transition metal dichalcogenides, defects in hexagonal boron nitride, and colloidal quantum dots in perovskites.
These platforms share a unique technological accessibility, enabling the rapid implementation of testbed quantum applications.
arXiv Detail & Related papers (2023-12-14T19:00:02Z) - Quantum dots for photonic quantum information technology [0.0]
We discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology.
QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers.
We present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements.
arXiv Detail & Related papers (2023-09-08T09:34:49Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Hybrid Quantum Nanophotonics: Interfacing Color Center in Nanodiamonds
with Si3N4-Photonics [55.41644538483948]
This chapter covers recent developments in the field of hybrid quantum photonics based on color centers in nanodiamonds and Si3N4-photonics.
We believe, that the hybrid approach provides a promising path to realize quantum photonic applications, such as quantum networks or quantum repeaters, in the near future.
arXiv Detail & Related papers (2022-07-26T08:59:48Z) - Advances in silicon quantum photonics [0.5823835334368094]
Quantum technology is poised to enable a step change in human capability for computing, communications and sensing.
For quantum technology to be implemented, a new paradigm photonic system is required.
Silicon photonics has unparalleled density and component performance.
arXiv Detail & Related papers (2022-07-06T13:11:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Single-photon quantum hardware: towards scalable photonic quantum
technology with a quantum advantage [0.41998444721319217]
We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up.
We will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing.
arXiv Detail & Related papers (2021-03-01T16:22:59Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Hybrid device for quantum nanophotonics [0.0]
Single photons, entangled photons and quantum light in general have been coupled to integrated approaches coming from classical optics.
In this article, we describe our recent advances using elongated optical nano-fibers.
We also present our latest results on nanocrystals made of perovskites and discuss some of their quantum properties.
arXiv Detail & Related papers (2020-01-28T17:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.