Benchmarking Quantum Architecture Search with Surrogate Assistance
- URL: http://arxiv.org/abs/2506.06762v1
- Date: Sat, 07 Jun 2025 11:11:04 GMT
- Title: Benchmarking Quantum Architecture Search with Surrogate Assistance
- Authors: Darya Martyniuk, Johannes Jung, Daniel Barta, Adrian Paschke,
- Abstract summary: We present SQuASH, the Surrogate Quantum Architecture Search Helper.<n>We present the methodology for creating a surrogate benchmark for QAS and demonstrate its capability to accelerate the execution and comparison of QAS methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of quantum algorithms and their practical applications currently relies heavily on the efficient design, compilation, and optimization of quantum circuits. In particular, parametrized quantum circuits (PQCs), which serve as the basis for variational quantum algorithms~(VQAs), demand carefully engineered architectures that balance performance with hardware constraints. Despite recent progress, identifying structural features of PQCs that enhance trainability, noise resilience, and overall algorithmic performance remains an active area of research. Addressing these challenges, quantum architecture search (QAS) aims to automate the design of problem-specific PQCs by systematically exploring circuit architectures to optimize algorithmic performance, often with varying degrees of consideration for hardware constraints. However, comparing QAS methods is challenging due to the absence of a unified benchmark evaluation pipeline, and the high resource demands. In this paper, we present SQuASH, the Surrogate Quantum Architecture Search Helper, a benchmark that leverages surrogate models to enable uniform comparison of QAS methods and considerably accelerate their evaluation. We present the methodology for creating a surrogate benchmark for QAS and demonstrate its capability to accelerate the execution and comparison of QAS methods. Additionally, we provide the code required to integrate SQuASH into custom QAS methods, enabling not only benchmarking but also the use of surrogate models for rapid prototyping. We further release the dataset used to train the surrogate models, facilitating reproducibility and further research.
Related papers
- RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
arXiv Detail & Related papers (2025-06-04T08:30:35Z) - Topology-Driven Quantum Architecture Search Framework [2.9862856321580895]
Topology-Driven Quantum Architecture Search (TD-QAS)<n>Topology-Driven Quantum Architecture Search (TD-QAS)<n>Topology-Driven Quantum Architecture Search (TD-QAS)
arXiv Detail & Related papers (2025-02-20T05:05:53Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
We propose differentiable quantum architecture search (DiffQAS) to enable trainable circuit parameters and structure weights.
We show that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures.
arXiv Detail & Related papers (2024-07-25T17:11:00Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
This thesis focuses on identifying functional quantum circuits in noisy quantum hardware.
We introduce a tensor-based quantum circuit encoding, restrictions on environment dynamics to explore the search space of possible circuits efficiently.
In dealing with various VQAs, our RL-based QAS outperforms existing QAS.
arXiv Detail & Related papers (2024-02-21T12:30:39Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)<n>QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Evolutionary Quantum Architecture Search for Parametrized Quantum
Circuits [7.298440208725654]
We introduce EQAS-PQC, an evolutionary quantum architecture search framework for PQC-based models.
We show that our method can significantly improve the performance of hybrid quantum-classical models.
arXiv Detail & Related papers (2022-08-23T19:47:37Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.