Towards Physics-informed Diffusion for Anomaly Detection in Trajectories
- URL: http://arxiv.org/abs/2506.06999v2
- Date: Sat, 14 Jun 2025 21:09:16 GMT
- Title: Towards Physics-informed Diffusion for Anomaly Detection in Trajectories
- Authors: Arun Sharma, Mingzhou Yang, Majid Farhadloo, Subhankar Ghosh, Bharat Jayaprakash, Shashi Shekhar,
- Abstract summary: We aim to find anomalous trajectories indicative of possible GPS spoofing (e.g., fake trajectory)<n>The problem is societally important to curb illegal activities in international waters, such as unauthorized fishing and illicit oil transfers.<n>Recent shows promising results for anomalous trajectory detection using generative models despite data sparsity.<n>We propose a physics-informed diffusion model that integrates kinematic constraints to identify trajectories that do not adhere to physical laws.
- Score: 4.414885369283509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given trajectory data, a domain-specific study area, and a user-defined threshold, we aim to find anomalous trajectories indicative of possible GPS spoofing (e.g., fake trajectory). The problem is societally important to curb illegal activities in international waters, such as unauthorized fishing and illicit oil transfers. The problem is challenging due to advances in AI generated in deep fakes generation (e.g., additive noise, fake trajectories) and lack of adequate amount of labeled samples for ground-truth verification. Recent literature shows promising results for anomalous trajectory detection using generative models despite data sparsity. However, they do not consider fine-scale spatiotemporal dependencies and prior physical knowledge, resulting in higher false-positive rates. To address these limitations, we propose a physics-informed diffusion model that integrates kinematic constraints to identify trajectories that do not adhere to physical laws. Experimental results on real-world datasets in the maritime and urban domains show that the proposed framework results in higher prediction accuracy and lower estimation error rate for anomaly detection and trajectory generation methods, respectively. Our implementation is available at https://github.com/arunshar/Physics-Informed-Diffusion-Probabilistic-Model.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Physics-Guided Abnormal Trajectory Gap Detection [2.813613899641924]
We propose a Space Time-Aware Gap Detection (STAGD) approach to leverage space-time indexing and merging trajectory gaps.
We also incorporate a Dynamic Region-based Merge (DRM) approach to efficiently compute gap abnormality scores.
arXiv Detail & Related papers (2024-03-10T17:07:28Z) - Geo-Localization Based on Dynamically Weighted Factor-Graph [74.75763142610717]
Feature-based geo-localization relies on associating features extracted from aerial imagery with those detected by the vehicle's sensors.
This requires that the type of landmarks must be observable from both sources.
We present a dynamically weighted factor graph model for the vehicle's trajectory estimation.
arXiv Detail & Related papers (2023-11-13T12:44:14Z) - Investigation of the Robustness of Neural Density Fields [7.67602635520562]
This work investigates neural density fields and their relative errors in the context of robustness to external factors like noise or constraints during training.
It is found that both models trained on a polyhedral and mascon ground truth perform similarly, indicating that the ground truth is not the accuracy bottleneck.
arXiv Detail & Related papers (2023-05-31T09:43:49Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Anomaly Detection in Trajectory Data with Normalizing Flows [0.0]
We propose an approach based on normalizing flows that enables complex density estimation from data with neural networks.
Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory.
We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques.
arXiv Detail & Related papers (2020-04-13T14:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.