論文の概要: End-to-End Probabilistic Framework for Learning with Hard Constraints
- arxiv url: http://arxiv.org/abs/2506.07003v2
- Date: Tue, 04 Nov 2025 02:29:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:26.324527
- Title: End-to-End Probabilistic Framework for Learning with Hard Constraints
- Title(参考訳): ハード制約による学習のためのエンドツーエンド確率的フレームワーク
- Authors: Utkarsh Utkarsh, Danielle C. Maddix, Ruijun Ma, Michael W. Mahoney, Yuyang Wang,
- Abstract要約: ProbHardE2Eは,ハード操作・物理制約を組み込んだ確率予測フレームワークである。
我々の手法は、幅広いニューラルネットワークアーキテクチャと組み合わせられる新しい微分可能確率射影層(DPPL)を用いている。
- 参考スコア(独自算出の注目度): 43.297232073870866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present ProbHardE2E, a probabilistic forecasting framework that incorporates hard operational/physical constraints, and provides uncertainty quantification. Our methodology uses a novel differentiable probabilistic projection layer (DPPL) that can be combined with a wide range of neural network architectures. DPPL allows the model to learn the system in an end-to-end manner, compared to other approaches where constraints are satisfied either through a post-processing step or at inference. ProbHardE2E optimizes a strictly proper scoring rule, without making any distributional assumptions on the target, which enables it to obtain robust distributional estimates (in contrast to existing approaches that generally optimize likelihood-based objectives, which are heavily biased by their distributional assumptions and model choices); and it can incorporate a range of non-linear constraints (increasing the power of modeling and flexibility). We apply ProbHardE2E in learning partial differential equations with uncertainty estimates and to probabilistic time-series forecasting, showcasing it as a broadly applicable general framework that connects these seemingly disparate domains.
- Abstract(参考訳): ProbHardE2Eは,厳密な操作・物理的制約を組み込んだ確率的予測フレームワークであり,不確実な定量化を提供する。
我々の手法は、幅広いニューラルネットワークアーキテクチャと組み合わせられる新しい微分可能確率射影層(DPPL)を用いている。
DPPLは、後処理のステップや推論によって制約が満たされる他のアプローチと比較して、システムをエンドツーエンドで学習することができる。
ProbHardE2Eは厳密な適切なスコアリングルールを最適化するが、ターゲットに分布的仮定を課すことなく、ロバストな分布的推定(一般に、分布的仮定とモデル選択に大きく偏っているオプティベースの目的を最適化する既存のアプローチとは対照的に)を得ることができる。
本稿では,不確実性推定を伴う偏微分方程式の学習や確率的時系列予測にProbHardE2Eを適用し,これら異なる領域を接続する汎用フレームワークとして広く応用できることを示す。
関連論文リスト
- LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization [48.91511514636768]
本稿では,外部制約から固有モデル能力へ推論長制御を変換するフレームワークであるLongth-Adaptive Policy Optimization (LAPO)を提案する。
LAPOは、2段階の強化学習プロセスを通じて適切な推論深度を理解することができる。
数学的推論ベンチマークの実験では、LAPOはトークンの使用量を最大40.9%削減し、精度は2.3%向上した。
論文 参考訳(メタデータ) (2025-07-21T16:14:41Z) - Enforcing Hard Linear Constraints in Deep Learning Models with Decision Rules [8.098452803458253]
本稿では、入力依存線形等式とニューラルネットワーク出力の不等式制約を強制するモデルに依存しないフレームワークを提案する。
このアーキテクチャは、予測精度のために訓練されたタスクネットワークと、実行時の決定ルールと堅牢な最適化を用いてトレーニングされた安全なネットワークを組み合わせることで、入力空間全体の実現可能性を保証する。
論文 参考訳(メタデータ) (2025-05-20T03:09:44Z) - Probabilistic neural operators for functional uncertainty quantification [14.08907045605149]
本稿では,ニューラル演算子の出力関数空間上の確率分布を学習するフレームワークである確率論的ニューラル演算子(PNO)を紹介する。
PNOは、厳密な適切なスコアリングルールに基づく生成モデリングにより、ニューラル演算子を拡張し、不確実性情報をトレーニングプロセスに直接統合する。
論文 参考訳(メタデータ) (2025-02-18T14:42:11Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting [61.02295959343446]
この研究はまず、相互作用モジュールから生じる不確実性をモデル化する新しい概念であるコラボレーティブ不確実性(CU)を提案する。
我々は、回帰と不確実性推定の両方を行うために、元の置換同変不確かさ推定器を備えた一般的なCU対応回帰フレームワークを構築した。
提案するフレームワークを,プラグインモジュールとして現在のSOTAマルチエージェント軌道予測システムに適用する。
論文 参考訳(メタデータ) (2022-07-11T21:17:41Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Deep Conditional Transformation Models [0.0]
特徴集合上の結果変数条件の累積分布関数(CDF)を学習することは依然として困難である。
条件変換モデルは、条件付きCDFの大規模なクラスをモデル化できる半パラメトリックなアプローチを提供する。
我々は,新しいネットワークアーキテクチャを提案し,異なるモデル定義の詳細を提供し,適切な制約を導出する。
論文 参考訳(メタデータ) (2020-10-15T16:25:45Z) - Robust-Adaptive Control of Linear Systems: beyond Quadratic Costs [14.309243378538012]
線形システムのロバストかつ適応的なモデル予測制御(MPC)の問題を考える。
この設定に対して、最初のエンドツーエンドのサブ最適トラクティリティ解析を提供する。
論文 参考訳(メタデータ) (2020-02-25T12:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。