Inverse Design of Metamaterials with Manufacturing-Guiding Spectrum-to-Structure Conditional Diffusion Model
- URL: http://arxiv.org/abs/2506.07083v1
- Date: Sun, 08 Jun 2025 10:57:18 GMT
- Title: Inverse Design of Metamaterials with Manufacturing-Guiding Spectrum-to-Structure Conditional Diffusion Model
- Authors: Jiawen Li, Jiang Guo, Yuanzhe Li, Zetian Mao, Jiaxing Shen, Tashi Xu, Diptesh Das, Jinming He, Run Hu, Yaerim Lee, Koji Tsuda, Junichiro Shiomi,
- Abstract summary: We propose a framework that implements customised spectrum-to-shape and size parameters to address one-to-many metamaterial inverse design problems.<n>We demonstrate the efficacy of the proposed method by successfully designing and fabricating a free-form metamaterial with a tailored selective emission spectrum for thermal camouflage applications.
- Score: 6.880252236792563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metamaterials are artificially engineered structures that manipulate electromagnetic waves, having optical properties absent in natural materials. Recently, machine learning for the inverse design of metamaterials has drawn attention. However, the highly nonlinear relationship between the metamaterial structures and optical behaviour, coupled with fabrication difficulties, poses challenges for using machine learning to design and manufacture complex metamaterials. Herein, we propose a general framework that implements customised spectrum-to-shape and size parameters to address one-to-many metamaterial inverse design problems using conditional diffusion models. Our method exhibits superior spectral prediction accuracy, generates a diverse range of patterns compared to other typical generative models, and offers valuable prior knowledge for manufacturing through the subsequent analysis of the diverse generated results, thereby facilitating the experimental fabrication of metamaterial designs. We demonstrate the efficacy of the proposed method by successfully designing and fabricating a free-form metamaterial with a tailored selective emission spectrum for thermal camouflage applications.
Related papers
- DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models [66.41802970528133]
Molecular structure elucidation from spectra is a foundational problem in chemistry.<n>Traditional methods rely heavily on expert interpretation and lack scalability.<n>We present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data.
arXiv Detail & Related papers (2025-07-09T13:57:20Z) - Toward a Robust and Generalizable Metamaterial Foundation Model [3.0049721990828084]
We introduce the Metamaterial Foundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models.<n>By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships.<n>This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.
arXiv Detail & Related papers (2025-07-03T08:48:36Z) - Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization [80.82828320306464]
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications.<n>PDD is an iterative, five-step process that consists of: i.e. deriving device behavior from design parameters, ii. simulating device performance, iv. fabricating the optimal device, and v. measuring device performance.<n>PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes.<n>In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD
arXiv Detail & Related papers (2025-06-24T23:32:54Z) - Nonlinear Inverse Design of Mechanical Multi-Material Metamaterials Enabled by Video Denoising Diffusion and Structure Identifier [2.624762732763203]
This paper presents a novel framework for inverse multi-material design based on nonlinear stress-strain responses.
By incorporating multiple materials, plasticity, and large deformation, our innovative design method allows for enhanced control over the highly nonlinear mechanical behavior of metamaterials.
arXiv Detail & Related papers (2024-09-20T21:26:15Z) - Guided Diffusion for Fast Inverse Design of Density-based Mechanical Metamaterials [41.97258566607252]
This paper proposes a fast inverse design method, whose core is an advanced deep generative AI algorithm, to generate voxel-based mechanical metamaterials.
Specifically, we use the self-conditioned diffusion model, capable of generating a microstructure with a resolution of $1283$ to approach the specified homogenized matrix in just 3 seconds.
arXiv Detail & Related papers (2024-01-24T16:31:50Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Modeling and Optimizing Laser-Induced Graphene [59.8912133964006]
We provide datasets that describe the optimization of the production of laser-induced graphene.
We pose three challenges based on the datasets we provide.
We present illustrative results, along with the code used to generate them, as a starting point for interested users.
arXiv Detail & Related papers (2021-07-29T18:08:24Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.