Promoting Ensemble Diversity with Interactive Bayesian Distributional Robustness for Fine-tuning Foundation Models
- URL: http://arxiv.org/abs/2506.07247v1
- Date: Sun, 08 Jun 2025 18:05:31 GMT
- Title: Promoting Ensemble Diversity with Interactive Bayesian Distributional Robustness for Fine-tuning Foundation Models
- Authors: Ngoc-Quan Pham, Tuan Truong, Quyen Tran, Tan Nguyen, Dinh Phung, Trung Le,
- Abstract summary: Interactive Bayesian Distributional Robustness (IBDR) is a novel Bayesian inference framework that allows modeling the interactions between particles.<n>We evaluate IBDR's performance against various baseline methods using the VTAB-1K benchmark and the common reasoning language task.
- Score: 24.411836907813374
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce Interactive Bayesian Distributional Robustness (IBDR), a novel Bayesian inference framework that allows modeling the interactions between particles, thereby enhancing ensemble quality through increased particle diversity. IBDR is grounded in a generalized theoretical framework that connects the distributional population loss with the approximate posterior, motivating a practical dual optimization procedure that enforces distributional robustness while fostering particle diversity. We evaluate IBDR's performance against various baseline methods using the VTAB-1K benchmark and the common reasoning language task. The results consistently show that IBDR outperforms these baselines, underscoring its effectiveness in real-world applications.
Related papers
- Global Variational Inference Enhanced Robust Domain Adaptation [7.414646586981638]
We propose a framework that learns continuous, class-conditional global priors via variational inference to enable structure-aware cross-domain alignment.<n>GVI-DA minimizes domain gaps through latent feature reconstruction, and mitigates posterior collapse using global codebook learning with randomized sampling.<n>It further improves robustness by discarding low-confidence pseudo-labels and generating reliable target-domain samples.
arXiv Detail & Related papers (2025-07-04T04:43:23Z) - Binarization-Aware Adjuster: Bridging Continuous Optimization and Binary Inference in Edge Detection [0.0]
Image edge detection (ED) faces a fundamental mismatch between training and inference.<n>In this paper, we propose a theoretical method to design a Binarization-Aware (BAA)<n>BAA explicitly incorporates binarization behavior into gradient-based optimization.
arXiv Detail & Related papers (2025-06-14T11:56:44Z) - Forests for Differences: Robust Causal Inference Beyond Parametric DiD [0.0]
Difference-in-Differences Bayesian Causal Forest (DiD-BCF) is a novel non-parametric model addressing key challenges in DiD estimation.<n>DiD-BCF provides a unified framework for estimating Average (ATE), Group-Average (GATE), and Conditional Average Treatment Effects (CATE)<n>Extensive simulations demonstrate DiD-BCF's superior performance over established benchmarks.
arXiv Detail & Related papers (2025-05-14T18:06:51Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
arXiv Detail & Related papers (2024-09-21T18:39:53Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
Diffusion-Based Purification (DBP) has emerged as an effective defense mechanism against adversarial attacks.<n>In this paper, we propose that the intrinsicity in the DBP process is the primary factor driving robustness.
arXiv Detail & Related papers (2024-04-22T16:10:38Z) - Distribution-Dependent Rates for Multi-Distribution Learning [26.38831409926518]
Recent multi-distribution learning framework tackles this objective in a dynamic interaction with the environment.
We provide distribution-dependent guarantees in the MDL regime, that scale with suboptimality gaps and result in superior dependence on the sample size.
We devise an adaptive optimistic algorithm, LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between uniform and optimistic allocation in the multi-armed bandit literature.
arXiv Detail & Related papers (2023-12-20T15:50:16Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
We introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters.
Our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively.
arXiv Detail & Related papers (2023-07-21T03:43:07Z) - Variance-Preserving-Based Interpolation Diffusion Models for Speech
Enhancement [53.2171981279647]
We present a framework that encapsulates both the VP- and variance-exploding (VE)-based diffusion methods.
To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models.
We evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-14T14:22:22Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
Binary density ratio estimation (DRE) provides the foundation for many state-of-the-art machine learning algorithms.
We develop a general framework from the perspective of Bregman minimization divergence.
We show that our framework leads to methods that strictly generalize their counterparts in binary DRE.
arXiv Detail & Related papers (2021-12-07T01:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.