Engineering and harnessing long-range interactions for atomic quantum simulators
- URL: http://arxiv.org/abs/2506.07250v2
- Date: Thu, 12 Jun 2025 20:31:05 GMT
- Title: Engineering and harnessing long-range interactions for atomic quantum simulators
- Authors: Javier Argüello-Luengo,
- Abstract summary: We show how advances in the cold-atom community to further engineer such long-range interactions have stimulated the simulation of new regimes of fundamental many-body problems.<n>We showcase various fields where such platforms can offer new insights, ranging from the simulation of condensed matter phenomena to the study of lattice gauge theories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactions between quantum particles, such as electrons, are the source of important effects, ranging from superconductivity, to the formation of molecular bonds, or the stability of elementary compounds at high-energies. In this article, we illustrate how advances in the cold-atom community to further engineer such long-range interactions have stimulated the simulation of new regimes of these fundamental many-body problems. The goal is two-fold: first, to provide a comprehensive review of the different strategies proposed and/or experimentally realized to induce long-range interactions among atoms moving in optical potentials. Second, to showcase various fields where such platforms can offer new insights, ranging from the simulation of condensed matter phenomena to the study of lattice gauge theories, and the simulation of electronic configurations in chemistry. We then discuss the challenges and opportunities of these platforms compared to other complementary approaches based on digital simulation and quantum computation.
Related papers
- Photon-mediated dipole-dipole interactions as a resource for quantum science and technology in cold atoms [0.0]
Photon-mediated dipole-dipole interactions arise from atom-light interactions.
Recent surge of interests promises this core mechanism of collective interactions as a resource to study quantum science.
arXiv Detail & Related papers (2024-10-28T01:55:35Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Laser-painted cavity-mediated interactions in a quantum gas [0.0]
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems.
Here we propose an experimental scheme employing laser-painted cavity-mediated interactions.
Our approach combines the versatility of cavity quantum electrodynamics with the precision of laser manipulation.
arXiv Detail & Related papers (2024-05-13T06:13:16Z) - Interpolating many-body wave functions for accelerated molecular dynamics on the near-exact electronic surface [0.0]
We develop a scheme for the correlated many-electron state through the space of atomic configurations.
We demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics.
We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories.
arXiv Detail & Related papers (2024-02-16T22:03:37Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Long-range electron-electron interactions in quantum dot systems and
applications in quantum chemistry [0.487576911714538]
Long-range interactions play a key role in several phenomena of quantum physics and chemistry.
We present the first detailed experimental characterization of long-range electron-electron interactions in an array of gate-defined semiconductor quantum dots.
Based on these findings, we investigate how long-range interactions in quantum-dot arrays may be utilized for analog simulations of artificial quantum matter.
arXiv Detail & Related papers (2022-02-14T14:25:04Z) - Non-equilibrium quantum domain reconfiguration dynamics in a
two-dimensional electronic crystal: experiments and quantum simulations [0.0]
We study quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material.
The crossover from temperature to quantum fluctuation dominated dynamics in the context of environmental noise is investigated.
The results are important for understanding the origin of the retention time in non-volatile memory devices.
arXiv Detail & Related papers (2021-03-12T15:22:10Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.