Non-perturbative Quantum Dynamics on Embedded Submanifolds: From Geometric Mass to Higgs Potentials
- URL: http://arxiv.org/abs/2506.07337v4
- Date: Sat, 05 Jul 2025 19:01:27 GMT
- Title: Non-perturbative Quantum Dynamics on Embedded Submanifolds: From Geometric Mass to Higgs Potentials
- Authors: Li Wang, Run Cheng, Jun Wang,
- Abstract summary: We establish a quantum dynamics framework for curved submanifolds embedded in higher-dimensional spaces.<n>We derive the first complete Schr"odinger and Klein-Gordon equations incorporating non-perturbative geometric interactions-resolving ambiguities in constrained quantization.<n>We also discuss the Higgs vacuum near small-mass black holes.
- Score: 8.008496553380805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish a quantum dynamics framework for curved submanifolds embedded in higher-dimensional spaces. Through rigorous dimensional reduction, we derive the first complete Schr\"{o}dinger and Klein-Gordon equations incorporating non-perturbative geometric interactions-resolving ambiguities in constrained quantization. Crucially, extrinsic curvature of the ambient manifold governs emergent low-dimensional quantum phenomena. Remarkably, this mechanism generates scalar field masses matching Kaluza-Klein spectra while eliminating periodic compactification requirements. Geometric induction concurrently produces Higgs mechanism potentials. Particle masses emerge solely from submanifold embedding geometry, with matter-field couplings encoded in curvature invariants. This enables experimental access to higher-dimensional physics at all energy scales through geometric induction. We also discuss the Higgs vacuum near small-mass black holes.
Related papers
- Horizon quantum geometries and decoherence [49.1574468325115]
There is mounting theoretical evidence that black hole horizons induce decoherence on a quantum system.<n>This phenomenon has been shown to owe its existence to soft modes.<n>We show that the discreteness of the energy levels associated to the different geometric configurations might have strong impact on the results.
arXiv Detail & Related papers (2025-07-24T18:00:30Z) - Quantum Brownian motion induced by fluctuating boundaries and compactification [0.0]
We investigate the quantum Brownian motion of a point charge arising as a consequence of two fluctuating point-like boundaries.<n>By associating a wave function with the length scale of each system, we demonstrate that typical divergences, which commonly appear in scenarios with fixed boundaries and compactification size, are effectively smoothed out.
arXiv Detail & Related papers (2025-03-23T00:09:46Z) - Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.<n>We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - Quantum Scattering of Spinless Particles in Riemannian Manifolds [0.0]
Quantum mechanics is sensitive to the geometry of the underlying space.
We present a framework for quantum scattering of a non-relativistic particle confined to a two-dimensional space.
arXiv Detail & Related papers (2024-02-16T10:50:50Z) - Hilbert space fragmentation and slow dynamics in particle-conserving
quantum East models [0.0]
We introduce a hitherto unexplored family of kinetically constrained models featuring a conserved particle number.
We reproduce the logarithmic dynamics observed in the quantum case using a classically simulable cellular automaton.
arXiv Detail & Related papers (2022-10-27T16:50:27Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Information geometry of quantum critical submanifolds: relevant,
marginal and irrelevant operators [0.0]
We analyze the thermodynamical limit of the quantum metric along critical submanifolds of theory space.
We relate its singular behavior to normal directions, which are naturally associated with relevant operators in the renormalization group sense.
arXiv Detail & Related papers (2022-01-04T19:47:54Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis.
We study a particular sequence of maps between manifold, with the last manifold of the sequence equipped with a Riemannian metric.
We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between implementing neural networks of practical interest.
arXiv Detail & Related papers (2021-12-17T11:43:30Z) - Geometric Induction in Chiral Superfluids [0.0]
We apply our theory to several well-known phases of chiral superfluid $rm 3 He$ and derive experimentally observable signatures.
The proposed interplay between geometry and chiral superfluid order provides a fascinating avenue to control and manipulate quantum states with strain.
arXiv Detail & Related papers (2021-12-08T19:06:03Z) - Non-perturbative Quantum Propagators in Bounded Spaces [0.0]
A generalised hit function is defined as a many-point propagator.
We show how it can be used to calculate the Feynman propagator.
We conjecture a general analytical formula for the propagator when Dirichlet boundary conditions are present in a given geometry.
arXiv Detail & Related papers (2021-10-11T02:47:26Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Expansion of a quantum gas in a shell trap [0.0]
We report the observation of the controlled expansion of a two-dimensional quantum gas confined onto a curved shell-shaped surface.
The zero-point energy of the transverse confinement manifests itself by the spontaneous emergence of an annular shape in the atomic distribution.
arXiv Detail & Related papers (2021-05-27T07:48:30Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Geometric Quantum Information Structure in Quantum Fields and their
Lattice Simulation [0.0]
An upper limit to distillable entanglement has an exponential decay defined by a geometric decay constant.
When regulated at short distances with a spatial lattice, this entanglement abruptly vanishes beyond a dimensionless separation.
We highlight potential impacts of the distillable entanglement structure on effective field theories, lattice QCD calculations and future quantum simulations.
arXiv Detail & Related papers (2020-08-09T04:26:49Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.