Distributed Risk-Sensitive Safety Filters for Uncertain Discrete-Time Systems
- URL: http://arxiv.org/abs/2506.07347v1
- Date: Mon, 09 Jun 2025 01:48:25 GMT
- Title: Distributed Risk-Sensitive Safety Filters for Uncertain Discrete-Time Systems
- Authors: Armin Lederer, Erfaun Noorani, Andreas Krause,
- Abstract summary: We propose a novel risk-sensitive safety filter for discrete-time multi-agent systems with uncertain dynamics.<n>Our approach relies on centralized risk-sensitive safety conditions based on exponential risk operators to ensure robustness against model uncertainties.
- Score: 39.53920064972246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safety in multi-agent systems is a significant challenge, particularly in settings where centralized coordination is impractical. In this work, we propose a novel risk-sensitive safety filter for discrete-time multi-agent systems with uncertain dynamics that leverages control barrier functions (CBFs) defined through value functions. Our approach relies on centralized risk-sensitive safety conditions based on exponential risk operators to ensure robustness against model uncertainties. We introduce a distributed formulation of the safety filter by deriving two alternative strategies: one based on worst-case anticipation and another on proximity to a known safe policy. By allowing agents to switch between strategies, feasibility can be ensured. Through detailed numerical evaluations, we demonstrate the efficacy of our approach in maintaining safety without being overly conservative.
Related papers
- Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>We introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - Runtime Safety through Adaptive Shielding: From Hidden Parameter Inference to Provable Guarantees [17.670635109868854]
Variations in hidden parameters, such as a robot's mass distribution or friction, pose safety risks during execution.<n>We develop a runtime shielding mechanism for reinforcement learning.<n>We prove that the proposed mechanism satisfies probabilistic safety guarantees and yields optimal policies.
arXiv Detail & Related papers (2025-05-20T23:45:45Z) - Learning Predictive Safety Filter via Decomposition of Robust Invariant
Set [6.94348936509225]
This paper presents advantages of both RMPC and RL RL to synthesize safety filters for nonlinear systems.
We propose a policy approach for robust reach problems and establish its complexity.
arXiv Detail & Related papers (2023-11-12T08:11:28Z) - CaRT: Certified Safety and Robust Tracking in Learning-based Motion
Planning for Multi-Agent Systems [7.77024796789203]
CaRT is a new hierarchical, distributed architecture to guarantee the safety and robustness of a learning-based motion planning policy.
We show that CaRT guarantees safety and the exponentialness of the trajectory tracking error, even under the presence of deterministic and bounded disturbance.
We demonstrate the effectiveness of CaRT in several examples of nonlinear motion planning and control problems, including optimal, multi-spacecraft reconfiguration.
arXiv Detail & Related papers (2023-07-13T21:51:29Z) - Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning [3.9821399546174825]
We introduce a deep reinforcement learning framework for safe decision making in uncertain environments.
We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems.
In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.
arXiv Detail & Related papers (2023-01-30T00:37:06Z) - ISAACS: Iterative Soft Adversarial Actor-Critic for Safety [0.9217021281095907]
This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems.
A safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error.
While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter.
arXiv Detail & Related papers (2022-12-06T18:53:34Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - Robust Policy Learning over Multiple Uncertainty Sets [91.67120465453179]
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments.
We develop an algorithm that enjoys the benefits of both system identification and robust RL.
arXiv Detail & Related papers (2022-02-14T20:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.