SELT: Self-Evaluation Tree Search for LLMs with Task Decomposition
- URL: http://arxiv.org/abs/2506.07557v1
- Date: Mon, 09 Jun 2025 08:52:27 GMT
- Title: SELT: Self-Evaluation Tree Search for LLMs with Task Decomposition
- Authors: Mengsong Wu, Di Zhang, Yuqiang Li, Dongzhan Zhou, Wenliang Chen,
- Abstract summary: We introduce SELT (Self-Evaluation LLM Tree Search), a novel framework to enhance LLM reasoning without relying on external reward models.<n>We validate our approach on challenging benchmarks, including the knowledge-based MMLU and the Tool Learning dataset Seal-Tools.
- Score: 5.5688696788198975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models (LLMs) have achieved remarkable success in a wide range of applications, their performance often degrades in complex reasoning tasks. In this work, we introduce SELT (Self-Evaluation LLM Tree Search), a novel framework that leverages a modified Monte Carlo Tree Search (MCTS) to enhance LLM reasoning without relying on external reward models. By redefining the Upper Confidence Bound scoring to align with intrinsic self-evaluation capabilities of LLMs and decomposing the inference process into atomic subtasks augmented with semantic clustering at each node, SELT effectively balances exploration and exploitation, reduces redundant reasoning paths, and mitigates hallucination. We validate our approach on challenging benchmarks, including the knowledge-based MMLU and the Tool Learning dataset Seal-Tools, where SELT achieves significant improvements in answer accuracy and reasoning robustness compared to baseline methods. Notably, our framework operates without task-specific fine-tuning, demonstrating strong generalizability across diverse reasoning tasks. Relevant results and code are available at https://github.com/fairyshine/SELT .
Related papers
- A Comparative Study of Specialized LLMs as Dense Retrievers [29.504113759761527]
This study systematically examines how task-specific adaptations in large language models (LLMs) influence their retrieval capabilities.<n>We conduct experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models.<n>We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching.
arXiv Detail & Related papers (2025-07-05T08:50:29Z) - DEEPQUESTION: Systematic Generation of Real-World Challenges for Evaluating LLMs Performance [3.9770095824794516]
We introduce DeepQuestion, a scalable automated framework that augments existing datasets based on Bloom's taxonomy.<n>We show substantial performance drops (even up to 70% accuracy loss) on higher-order tasks, underscoring persistent gaps in deep reasoning.
arXiv Detail & Related papers (2025-05-30T12:39:42Z) - Rethinking the Unsolvable: When In-Context Search Meets Test-Time Scaling [1.219841051166348]
In this paper, we explore the combined potential of in-context search and test-time scaling on super hard reasoning tasks.<n>We find that by employing advanced in-context search prompting to LLMs augmented with internal scaling, one can achieve transformative performance breakthroughs.
arXiv Detail & Related papers (2025-05-28T12:28:18Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.<n>It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.<n>Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.