Intent Matters: Enhancing AI Tutoring with Fine-Grained Pedagogical Intent Annotation
- URL: http://arxiv.org/abs/2506.07626v1
- Date: Mon, 09 Jun 2025 10:45:18 GMT
- Title: Intent Matters: Enhancing AI Tutoring with Fine-Grained Pedagogical Intent Annotation
- Authors: Kseniia Petukhova, Ekaterina Kochmar,
- Abstract summary: We show that fine-grained annotation of teacher intents can improve the quality of LLM-generated tutoring responses.<n>We focus on MathDial, a dialog dataset for math instruction, and apply an automated annotation framework to re-annotate a portion of the dataset.<n>We then fine-tune an LLM using these new annotations and compare its performance to models trained on the original four-category taxonomy.
- Score: 5.016171607846873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) hold great promise for educational applications, particularly in intelligent tutoring systems. However, effective tutoring requires alignment with pedagogical strategies - something current LLMs lack without task-specific adaptation. In this work, we explore whether fine-grained annotation of teacher intents can improve the quality of LLM-generated tutoring responses. We focus on MathDial, a dialog dataset for math instruction, and apply an automated annotation framework to re-annotate a portion of the dataset using a detailed taxonomy of eleven pedagogical intents. We then fine-tune an LLM using these new annotations and compare its performance to models trained on the original four-category taxonomy. Both automatic and qualitative evaluations show that the fine-grained model produces more pedagogically aligned and effective responses. Our findings highlight the value of intent specificity for controlled text generation in educational settings, and we release our annotated data and code to facilitate further research.
Related papers
- Can Large Language Models Match Tutoring System Adaptivity? A Benchmarking Study [0.0]
Large Language Models (LLMs) hold promise as dynamic instructional aids.<n>Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)
arXiv Detail & Related papers (2025-04-07T23:57:32Z) - MathTutorBench: A Benchmark for Measuring Open-ended Pedagogical Capabilities of LLM Tutors [76.1634959528817]
We present MathTutorBench, an open-source benchmark for holistic tutoring model evaluation.<n>MathTutorBench contains datasets and metrics that broadly cover tutor abilities as defined by learning sciences research in dialog-based teaching.<n>We evaluate a wide set of closed- and open-weight models and find that subject expertise, indicated by solving ability, does not immediately translate to good teaching.
arXiv Detail & Related papers (2025-02-26T08:43:47Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Aligning Teacher with Student Preferences for Tailored Training Data Generation [40.85451525264779]
We propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, to generate tailored training examples for Knowledge Distillation.
Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales.
In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task.
arXiv Detail & Related papers (2024-06-27T14:51:17Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - Assisted Text Annotation Using Active Learning to Achieve High Quality
with Little Effort [9.379650501033465]
We propose a tool that enables researchers to create large, high-quality, annotated datasets with only a few manual annotations.
We combine an active learning (AL) approach with a pre-trained language model to semi-automatically identify annotation categories.
Our preliminary results show that employing AL strongly reduces the number of annotations for correct classification of even complex and subtle frames.
arXiv Detail & Related papers (2021-12-15T13:14:58Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
We investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios.
We propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types.
arXiv Detail & Related papers (2021-08-24T09:39:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.