Leveraging Network Methods for Hub-like Microservice Detection
- URL: http://arxiv.org/abs/2506.07683v2
- Date: Thu, 12 Jun 2025 08:28:06 GMT
- Title: Leveraging Network Methods for Hub-like Microservice Detection
- Authors: Alexander Bakhtin, Matteo Esposito, Valentina Lenarduzzi, Davide Taibi,
- Abstract summary: Hub-like microservice anti-pattern lacks unambiguous definition and detection method.<n>In this work, we aim to find a robust detection approach for the Hub-like microservice anti-pattern.
- Score: 48.55946052680251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: Microservice Architecture is a popular architectural paradigm that facilitates flexibility by decomposing applications into small, independently deployable services. Catalogs of architectural anti-patterns have been proposed to highlight the negative aspects of flawed microservice design. In particular, the Hub-like anti-pattern lacks an unambiguous definition and detection method. Aim: In this work, we aim to find a robust detection approach for the Hub-like microservice anti-pattern that outputs a reasonable number of Hub-like candidates with high precision. Method: We leveraged a dataset of 25 microservice networks and several network hub detection techniques to identify the Hub-like anti-pattern, namely scale-free property, centrality metrics and clustering coefficient, minimum description length principle, and the approach behind the Arcan tool. Results and Conclusion: Our findings revealed that the studied architectural networks are not scale-free, that most considered hub detection approaches do not agree on the detected hubs, and that the method by Kirkley leveraging the Erdos-Renyi encoding is the most accurate one in terms of the number of detected hubs and the detection precision. Investigating further the applicability of these methods to detecting Hub-like components in microservice-based and other systems opens up new research directions. Moreover, our results provide an evaluation of the approach utilized by the widely used Arcan tool and highlight the potential to update the tool to use the normalized degree centrality of a component in the network, or for the approach based on ER encoding to be adopted instead.
Related papers
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDAR-based localization and mapping is one of the core components in many modern robotic systems.
This work proposes a neural network-based estimation approach for detecting (non-)localizability during robot operation.
arXiv Detail & Related papers (2022-03-11T01:12:00Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
We propose a novel model-driven deep network for infrared small target detection.
We modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network.
We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of each component in our network architecture.
arXiv Detail & Related papers (2020-12-15T19:33:09Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z) - Characterization and Identification of Cloudified Mobile Network
Performance Bottlenecks [0.0]
This study is a first attempt to experimentally explore the range of performance bottlenecks that 5G mobile networks can experience.
In particular, we find that distributed analytics performs reasonably well both in terms of bottleneck identification accuracy and incurred computational and communication overhead.
arXiv Detail & Related papers (2020-07-22T14:46:51Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
We propose a simple gated network (GateNet) to solve both issues at once.
With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed "Fold" operation (Fold-ASPP) to accurately localize salient objects of various scales.
arXiv Detail & Related papers (2020-07-16T02:00:53Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.