Lightweight Sequential Transformers for Blood Glucose Level Prediction in Type-1 Diabetes
- URL: http://arxiv.org/abs/2506.07864v2
- Date: Sat, 14 Jun 2025 15:43:35 GMT
- Title: Lightweight Sequential Transformers for Blood Glucose Level Prediction in Type-1 Diabetes
- Authors: Mirko Paolo Barbato, Giorgia Rigamonti, Davide Marelli, Paolo Napoletano,
- Abstract summary: Type 1 Diabetes (T1D) affects millions worldwide, requiring continuous monitoring to prevent severe hypo- and hyperglycemic events.<n>We propose a novel Lightweight Sequential Transformer model designed for blood glucose prediction in T1D.<n> Experiments on two benchmark datasets, OhioT1DM and DiaTrend, demonstrate that the proposed model outperforms state-of-the-art methods in predicting glucose levels and detecting adverse events.
- Score: 3.8423577105159317
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Type 1 Diabetes (T1D) affects millions worldwide, requiring continuous monitoring to prevent severe hypo- and hyperglycemic events. While continuous glucose monitoring has improved blood glucose management, deploying predictive models on wearable devices remains challenging due to computational and memory constraints. To address this, we propose a novel Lightweight Sequential Transformer model designed for blood glucose prediction in T1D. By integrating the strengths of Transformers' attention mechanisms and the sequential processing of recurrent neural networks, our architecture captures long-term dependencies while maintaining computational efficiency. The model is optimized for deployment on resource-constrained edge devices and incorporates a balanced loss function to handle the inherent data imbalance in hypo- and hyperglycemic events. Experiments on two benchmark datasets, OhioT1DM and DiaTrend, demonstrate that the proposed model outperforms state-of-the-art methods in predicting glucose levels and detecting adverse events. This work fills the gap between high-performance modeling and practical deployment, providing a reliable and efficient T1D management solution.
Related papers
- Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading [53.11883409422728]
This work proposes a novel autoregressive ordinal regression method called AOR-DR.<n>We decompose the diabetic retinopathy grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features.<n>We exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression.
arXiv Detail & Related papers (2025-07-07T13:22:35Z) - Predicting Diabetes Using Machine Learning: A Comparative Study of Classifiers [0.0]
Diabetes remains a significant health challenge globally, contributing to severe complications like kidney disease, vision loss, and heart issues.<n>Our study introduces an innovative diabetes prediction framework, leveraging both traditional ML techniques and advanced ensemble methods.<n>Central to our approach is the development of a novel model, DNet, a hybrid architecture combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers.
arXiv Detail & Related papers (2025-05-11T16:14:31Z) - Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling [1.2256664621079256]
This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations.<n>The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states.<n>Results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
arXiv Detail & Related papers (2025-03-24T21:26:12Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Domain Adaptive Diabetic Retinopathy Grading with Model Absence and Flowing Data [45.75724873443564]
Domain shift poses a significant challenge in clinical applications, e.g., Diabetic Retinopathy grading.<n>We propose a novel approach, Generative Unadversarial ExampleS (GUES), which enables adaptation from a data-centric perspective.
arXiv Detail & Related papers (2024-12-02T07:14:25Z) - Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNet is an AI-powered sensor system for continuously monitoring behavioral and physiological health.<n>We propose a decomposition-based transformer model that incorporates patients' behavioral and physiological data.<n>G GlucoNet achieves a 60% improvement in RMSE and a 21% reduction in the number of parameters, improving RMSE and MAE by 51% and 57%, using data obtained involving 12 participants with T1-Diabetes.
arXiv Detail & Related papers (2024-11-16T05:09:20Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Prediction-Coherent LSTM-based Recurrent Neural Network for Safer
Glucose Predictions in Diabetic People [4.692400531340393]
We propose a LSTM-based recurrent neural network architecture and loss function that enhance the stability of predictions.
The study is conducted on type 1 and type 2 diabetic people, with a focus on predictions made 30-minutes ahead of time.
arXiv Detail & Related papers (2020-09-08T13:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.