GaussianVAE: Adaptive Learning Dynamics of 3D Gaussians for High-Fidelity Super-Resolution
- URL: http://arxiv.org/abs/2506.07897v1
- Date: Mon, 09 Jun 2025 16:13:12 GMT
- Title: GaussianVAE: Adaptive Learning Dynamics of 3D Gaussians for High-Fidelity Super-Resolution
- Authors: Shuja Khalid, Mohamed Ibrahim, Yang Liu,
- Abstract summary: We present a novel approach for enhancing the resolution and geometric fidelity of 3D Gaussian Splatting (3DGS) beyond native training resolution.<n>Our work breaks this limitation through a lightweight generative model that predicts and refines additional 3D Gaussians where needed most.
- Score: 7.288410309484523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach for enhancing the resolution and geometric fidelity of 3D Gaussian Splatting (3DGS) beyond native training resolution. Current 3DGS methods are fundamentally limited by their input resolution, producing reconstructions that cannot extrapolate finer details than are present in the training views. Our work breaks this limitation through a lightweight generative model that predicts and refines additional 3D Gaussians where needed most. The key innovation is our Hessian-assisted sampling strategy, which intelligently identifies regions that are likely to benefit from densification, ensuring computational efficiency. Unlike computationally intensive GANs or diffusion approaches, our method operates in real-time (0.015s per inference on a single consumer-grade GPU), making it practical for interactive applications. Comprehensive experiments demonstrate significant improvements in both geometric accuracy and rendering quality compared to state-of-the-art methods, establishing a new paradigm for resolution-free 3D scene enhancement.
Related papers
- GaussianFocus: Constrained Attention Focus for 3D Gaussian Splatting [5.759434800012218]
3D Gaussian Splatting technique delivers top-tier rendering quality and efficiency.<n>However, the method tends to generate excessive redundant noisy Gaussians overfitted to every training view.<n>We introduce GaussianFocus, an innovative approach that incorporates a patch attention algorithm to refine rendering quality.
arXiv Detail & Related papers (2025-03-22T15:18:23Z) - ResGS: Residual Densification of 3D Gaussian for Efficient Detail Recovery [11.706262924395768]
We introduce a novel densification operation, residual split, which adds a downscaled Gaussian as a residual.<n>Our approach is capable of adaptively retrieving details and complementing missing geometry.
arXiv Detail & Related papers (2024-12-10T13:19:27Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.<n>To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.<n>Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - ELMGS: Enhancing memory and computation scaLability through coMpression for 3D Gaussian Splatting [16.373800112150573]
3D models have recently been popularized by the potentiality of end-to-end training offered by Neural Radiance Fields and 3D Gaussian Splatting models.
We propose an approach enabling both memory and computation scalability of such models.
Our results on popular benchmarks showcase the effectiveness of the proposed approach and open the road to the broad deployability of such a solution even on resource-constrained devices.
arXiv Detail & Related papers (2024-10-30T17:01:28Z) - MVGS: Multi-view-regulated Gaussian Splatting for Novel View Synthesis [22.80370814838661]
Recent works in volume rendering, textite.g. NeRF and 3D Gaussian Splatting (3DGS), significantly advance the rendering quality and efficiency.
We propose a new 3DGS optimization method embodying four key novel contributions.
arXiv Detail & Related papers (2024-10-02T23:48:31Z) - Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
We propose a unified optimization method to make Gaussians adaptive for arbitrary scales.
Inspired by the mipmap technique, we design pseudo ground-truth for the target scale and propose a scale-consistency guidance loss to inject scale information into 3D Gaussians.
Our method outperforms 3DGS in PSNR by an average of 9.25 dB for zoom-in and 10.40 dB for zoom-out.
arXiv Detail & Related papers (2024-08-12T16:49:22Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering.
Our work introduces a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods.
arXiv Detail & Related papers (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks.
We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation.
arXiv Detail & Related papers (2023-12-08T03:55:34Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.