LUCIFER: Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement
- URL: http://arxiv.org/abs/2506.07915v1
- Date: Mon, 09 Jun 2025 16:30:05 GMT
- Title: LUCIFER: Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement
- Authors: Dimitris Panagopoulos, Adolfo Perrusquia, Weisi Guo,
- Abstract summary: In dynamic environments, the rapid obsolescence of pre-existing environmental knowledge creates a gap between an agent's internal model and its operational context.<n>We propose LUCIFER, a domain-agnostic framework that integrates a hierarchical decision-making architecture with reinforcement learning.<n>We show that LUCIFER improves exploration efficiency and decision quality, outperforming flat, goal-conditioned policies.
- Score: 5.522800137785975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In dynamic environments, the rapid obsolescence of pre-existing environmental knowledge creates a gap between an agent's internal model and the evolving reality of its operational context. This disparity between prior and updated environmental valuations fundamentally limits the effectiveness of autonomous decision-making. To bridge this gap, the contextual bias of human domain stakeholders, who naturally accumulate insights through direct, real-time observation, becomes indispensable. However, translating their nuanced, and context-rich input into actionable intelligence for autonomous systems remains an open challenge. To address this, we propose LUCIFER (Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement), a domain-agnostic framework that integrates a hierarchical decision-making architecture with reinforcement learning (RL) and large language models (LLMs) into a unified system. This architecture mirrors how humans decompose complex tasks, enabling a high-level planner to coordinate specialised sub-agents, each focused on distinct objectives and temporally interdependent actions. Unlike traditional applications where LLMs are limited to single role, LUCIFER integrates them in two synergistic roles: as context extractors, structuring verbal stakeholder input into domain-aware representations that influence decision-making through an attention space mechanism aligning LLM-derived insights with the agent's learning process, and as zero-shot exploration facilitators guiding the agent's action selection process during exploration. We benchmark various LLMs in both roles and demonstrate that LUCIFER improves exploration efficiency and decision quality, outperforming flat, goal-conditioned policies. Our findings show the potential of context-driven decision-making, where autonomous systems leverage human contextual knowledge for operational success.
Related papers
- Scaling and Beyond: Advancing Spatial Reasoning in MLLMs Requires New Recipes [84.1059652774853]
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks.<n>Recent studies have exposed critical limitations in their spatial reasoning capabilities.<n>This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world.
arXiv Detail & Related papers (2025-04-21T11:48:39Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.<n>We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Autotelic Reinforcement Learning: Exploring Intrinsic Motivations for Skill Acquisition in Open-Ended Environments [1.104960878651584]
This paper presents a comprehensive overview of autotelic Reinforcement Learning (RL), emphasizing the role of intrinsic motivations in the open-ended formation of skill repertoires.<n>We delineate the distinctions between knowledge-based and competence-based intrinsic motivations, illustrating how these concepts inform the development of autonomous agents capable of generating and pursuing self-defined goals.
arXiv Detail & Related papers (2025-02-06T14:37:46Z) - Practical Considerations for Agentic LLM Systems [5.455744338342196]
This paper frames actionable insights and considerations from the research community in the context of established application paradigms.<n> Namely, we position relevant research findings into four broad categories--Planning, Memory Tools, and Control Flow--based on common practices in application-focused literature.
arXiv Detail & Related papers (2024-12-05T11:57:49Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence [0.0]
This paper introduces a transformative approach by organizing Large Language Models into community-based structures.
We investigate different organizational models-hierarchical, flat, dynamic, and federated-each presenting unique benefits and challenges for collaborative AI systems.
The implementation of such communities holds substantial promise for improve problem-solving capabilities in AI.
arXiv Detail & Related papers (2024-05-06T20:15:45Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.