MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
- URL: http://arxiv.org/abs/2506.07999v1
- Date: Mon, 09 Jun 2025 17:59:01 GMT
- Title: MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
- Authors: Junhao Chen, Yulia Tsvetkov, Xiaochuang Han,
- Abstract summary: We introduce MADFormer, a Mixed Autoregressive Diffusion and Transformer that serves as a testbed for analyzing AR-diffusion trade-offs.<n>We identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute.
- Score: 32.945437908689286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in multimodal generation has increasingly combined autoregressive (AR) and diffusion-based approaches, leveraging their complementary strengths: AR models capture long-range dependencies and produce fluent, context-aware outputs, while diffusion models operate in continuous latent spaces to refine high-fidelity visual details. However, existing hybrids often lack systematic guidance on how and why to allocate model capacity between these paradigms. In this work, we introduce MADFormer, a Mixed Autoregressive and Diffusion Transformer that serves as a testbed for analyzing AR-diffusion trade-offs. MADFormer partitions image generation into spatial blocks, using AR layers for one-pass global conditioning across blocks and diffusion layers for iterative local refinement within each block. Through controlled experiments on FFHQ-1024 and ImageNet, we identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute. Our findings offer practical design principles for future hybrid generative models.
Related papers
- Improving Progressive Generation with Decomposable Flow Matching [50.63174319509629]
Decomposable Flow Matching (DFM) is a simple and effective framework for the progressive generation of visual media.<n>On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline.
arXiv Detail & Related papers (2025-06-24T17:58:02Z) - A Hybrid Wavelet-Fourier Method for Next-Generation Conditional Diffusion Models [0.0]
We present a novel generative modeling framework,Wavelet-Fourier-Diffusion, which adapts the diffusion paradigm to hybrid frequency representations.<n>We show how the hybrid frequency-based representation improves control over global coherence and fine texture synthesis.
arXiv Detail & Related papers (2025-04-04T17:11:04Z) - One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.<n>First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.<n>Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Causal Diffusion Transformers for Generative Modeling [19.919979972882466]
We introduce Causal Diffusion as the autoregressive (AR) counterpart of Diffusion models.<n>CaulFusion is a decoder-only transformer that dual-factorizes data across sequential tokens and diffusion noise levels.
arXiv Detail & Related papers (2024-12-16T18:59:29Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSR is a Domain Shift diffusion-based SR model that capitalizes on the generative powers of pretrained diffusion models.<n>At the core of our approach is a domain shift equation that integrates seamlessly with existing diffusion models.<n>Our proposed method achieves state-of-the-art performance on synthetic and real-world datasets, while notably requiring only 5 sampling steps.
arXiv Detail & Related papers (2024-09-26T12:16:11Z) - Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas [33.334956022229846]
We propose the Merge-Attend-Diffuse operator, which can be plugged into different types of pretrained diffusion models used in a joint diffusion setting.
Specifically, we merge the diffusion paths, reprogramming self- and cross-attention to operate on the aggregated latent space.
Our method maintains compatibility with the input prompt and visual quality of the generated images while increasing their semantic coherence.
arXiv Detail & Related papers (2024-08-28T09:22:32Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.