論文の概要: The AI Imperative: Scaling High-Quality Peer Review in Machine Learning
- arxiv url: http://arxiv.org/abs/2506.08134v1
- Date: Mon, 09 Jun 2025 18:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:40.372104
- Title: The AI Imperative: Scaling High-Quality Peer Review in Machine Learning
- Title(参考訳): AIインペラティブ - マシンラーニングにおける高品質ピアレビューのスケールアップ
- Authors: Qiyao Wei, Samuel Holt, Jing Yang, Markus Wulfmeier, Mihaela van der Schaar,
- Abstract要約: AIによるピアレビューは、緊急の研究とインフラの優先事項になるべきだ、と私たちは主張する。
我々は、事実検証の強化、レビュアーのパフォーマンスの指導、品質改善における著者の支援、意思決定におけるAC支援におけるAIの具体的な役割を提案する。
- 参考スコア(独自算出の注目度): 49.87236114682497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Peer review, the bedrock of scientific advancement in machine learning (ML), is strained by a crisis of scale. Exponential growth in manuscript submissions to premier ML venues such as NeurIPS, ICML, and ICLR is outpacing the finite capacity of qualified reviewers, leading to concerns about review quality, consistency, and reviewer fatigue. This position paper argues that AI-assisted peer review must become an urgent research and infrastructure priority. We advocate for a comprehensive AI-augmented ecosystem, leveraging Large Language Models (LLMs) not as replacements for human judgment, but as sophisticated collaborators for authors, reviewers, and Area Chairs (ACs). We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making. Crucially, we contend that the development of such systems hinges on access to more granular, structured, and ethically-sourced peer review process data. We outline a research agenda, including illustrative experiments, to develop and validate these AI assistants, and discuss significant technical and ethical challenges. We call upon the ML community to proactively build this AI-assisted future, ensuring the continued integrity and scalability of scientific validation, while maintaining high standards of peer review.
- Abstract(参考訳): 機械学習(ML)における科学的進歩の基盤であるピアレビューは、スケールの危機に悩まされている。
NeurIPS、ICML、ICLRといったMLのプレミア会場への原稿提出の指数的な増加は、資格のあるレビュアーの限られた能力を上回っており、レビューの品質、一貫性、レビュアーの疲労に関する懸念につながっている。
このポジションペーパーは、AI支援のピアレビューが緊急の研究とインフラの優先事項となる必要があると主張している。
我々は、人間の判断の代替としてではなく、著者、レビュアー、エリアチェア(AC)のための洗練された協力者として、Large Language Models(LLM)を活用する、包括的なAI強化エコシステムを提唱する。
我々は、事実検証の強化、レビュアーのパフォーマンスの指導、品質改善における著者の支援、意思決定におけるAC支援におけるAIの具体的な役割を提案する。
重要なことは、このようなシステムの開発は、より粒度が高く、構造化され、倫理的な査読プロセスデータへのアクセスに依存している、と我々は主張する。
我々は、これらのAIアシスタントを開発し、検証するための実証実験を含む研究課題の概要を述べ、重要な技術的および倫理的課題について議論する。
私たちはMLコミュニティに、このAI支援の未来を積極的に構築し、高い基準のピアレビューを維持しながら、科学的検証の完全性とスケーラビリティの継続を保証するよう呼びかけています。
関連論文リスト
- ReviewEval: An Evaluation Framework for AI-Generated Reviews [9.35023998408983]
学術研究の増大は、資格のあるレビュアーの不足と相まって、ピアレビューに対する革新的なアプローチを必要としている。
本稿では,AIによるレビューを総合的に評価するフレームワークであるReviewEvalを提案する。
本稿では、AIに基づくピアレビューに不可欠な指標を確立し、学術研究におけるAI生成レビューの信頼性と影響を大幅に向上させる。
論文 参考訳(メタデータ) (2025-02-17T12:22:11Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Automated scholarly paper review: Concepts, technologies, and challenges [5.431798850623952]
近年、ピアレビュープロセスを支援するために人工知能(AI)が応用されている。
人間の関与により、このような制限は避けられないままである。
論文 参考訳(メタデータ) (2021-11-15T04:44:57Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。