論文の概要: A Practical Guide to Tuning Spiking Neuronal Dynamics
- arxiv url: http://arxiv.org/abs/2506.08138v1
- Date: Mon, 09 Jun 2025 18:41:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:40.454889
- Title: A Practical Guide to Tuning Spiking Neuronal Dynamics
- Title(参考訳): 触覚スパイキング神経ダイナミクスの実践的ガイド
- Authors: William Gebhardt, Alexander G. Ororbia, Nathan McDonald, Clare Thiem, Jack Lombardi,
- Abstract要約: 我々は、SNNで使用されている2つの異なる基礎ニューロンユニット、すなわち、漏洩した統合・火災(LIF)と共鳴・火災(RAF)ニューロンに焦点を当てた。
本稿では,SNNの他の重要な設計要素として,入力エンコーディングの選択と排他的阻害集団のセットアップについて論じる。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we examine fundamental elements of spiking neural networks (SNNs) as well as how to tune them. Concretely, we focus on two different foundational neuronal units utilized in SNNs -- the leaky integrate-and-fire (LIF) and the resonate-and-fire (RAF) neuron. We explore key equations and how hyperparameter values affect behavior. Beyond hyperparameters, we discuss other important design elements of SNNs -- the choice of input encoding and the setup for excitatory-inhibitory populations -- and how these impact LIF and RAF dynamics.
- Abstract(参考訳): 本研究では、スパイクニューラルネットワーク(SNN)の基本要素と、それらをチューニングする方法を検討する。
具体的には、SNNで使用されている2つの異なる基礎ニューロンユニット、すなわち、漏洩した統合と火災(LIF)と共鳴と火災(RAF)ニューロンに焦点を当てる。
我々は、鍵となる方程式とハイパーパラメーター値が振る舞いにどのように影響するかを探求する。
ハイパーパラメータ以外にも、入力エンコーディングの選択や排他的阻害集団のセットアップなど、SNNの他の重要な設計要素や、それがLIFとRAFのダイナミクスに与える影響について論じる。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
神経科学とAIの両方では、ニューロン間の'バインディング'が、ネットワークの深い層においてより抽象的な概念を表現するために表現を圧縮する、競争的な学習の形式につながることが知られている。
完全に接続された畳み込みや注意機構などの任意の接続設計とともに人工的再考を導入する。
このアイデアは、教師なしオブジェクト発見、敵対的ロバスト性、不確実性、定量化、推論など、幅広いタスクにわたるパフォーマンス改善を提供する。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる計算効率が高く生物学的に妥当な代替品として提案されている。
長距離依存タスクのためのスケーラブルな確率的スパイク学習フレームワークを開発した。
我々のモデルは、様々な長距離依存タスクにまたがるSNNモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T04:23:11Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
スパイキングニューラルネットワーク(SNN)は、固有の時間処理とスパイクベースの計算のため、人工知能ニューラルネットワーク(ANN)と区別する。
スパイクニューロンを用いたデータ処理は、他の2つの生物学的にインスピレーションを受けたニューロンの特徴と接続重みを協調学習することで向上できることを示す。
論文 参考訳(メタデータ) (2023-09-12T09:13:26Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
スパイキングネットワーク(SNN)は、従来の人工ニューラルネットワークに代わる有望なエネルギー効率の代替手段である。
本研究では,SNNにおける固有冗長性に関する3つの重要な疑問に焦点をあてる。
本稿では,SNNの冗長性を活用するためのアドバンストアテンション(ASA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:58:25Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Exploiting High Performance Spiking Neural Networks with Efficient
Spiking Patterns [4.8416725611508244]
スパイキングニューラルネットワーク(SNN)は、離散スパイクシーケンスを使用して情報を伝達し、脳の情報伝達を著しく模倣する。
本稿では、動的バーストパターンを導入し、短時間の性能と動的時間的性能のトレードオフを可能にするLeaky Integrate and Fire or Burst(LIFB)ニューロンを設計する。
論文 参考訳(メタデータ) (2023-01-29T04:22:07Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Finite Meta-Dynamic Neurons in Spiking Neural Networks for
Spatio-temporal Learning [13.037452551907657]
Spiking Neural Networks (SNN) は、生物学的に証明可能な構造と学習原則を取り入れている。
時相学習におけるネットワークの一般化を改善するために,SNNを改善するメタ動的ニューロン(MDN)を提案する。
MDNは空間的(MNIST)と時間的(TIt)データセットから生成され、その後様々な時間的タスクに拡張された。
論文 参考訳(メタデータ) (2020-10-07T03:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。