論文の概要: Analyzing Internal Activity and Robustness of SNNs Across Neuron Parameter Space
- arxiv url: http://arxiv.org/abs/2507.14757v1
- Date: Sat, 19 Jul 2025 21:13:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.038806
- Title: Analyzing Internal Activity and Robustness of SNNs Across Neuron Parameter Space
- Title(参考訳): ニューロンパラメータ空間におけるSNNの内部活動とロバスト性の解析
- Authors: Szymon Mazurek, Jakub Caputa, Maciej Wielgosz,
- Abstract要約: Spiking Neural Networks (SNN)は、従来の人工ニューラルネットワークに代わるエネルギー効率の良い代替手段を提供する。
ネットワークが有意義な活動と機能的行動を示す運用空間を特徴付ける。
本結果は,堅牢で効率的なSNNをデプロイするための実践的ガイドラインを提供する。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) offer energy-efficient and biologically plausible alternatives to traditional artificial neural networks, but their performance depends critically on the tuning of neuron model parameters. In this work, we identify and characterize an operational space - a constrained region in the neuron hyperparameter domain (specifically membrane time constant tau and voltage threshold vth) - within which the network exhibits meaningful activity and functional behavior. Operating inside this manifold yields optimal trade-offs between classification accuracy and spiking activity, while stepping outside leads to degeneration: either excessive energy use or complete network silence. Through systematic exploration across datasets and architectures, we visualize and quantify this manifold and identify efficient operating points. We further assess robustness to adversarial noise, showing that SNNs exhibit increased spike correlation and internal synchrony when operating outside their optimal region. These findings highlight the importance of principled hyperparameter tuning to ensure both task performance and energy efficiency. Our results offer practical guidelines for deploying robust and efficient SNNs, particularly in neuromorphic computing scenarios.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わるエネルギー効率が高く生物学的に妥当な代替手段を提供するが、その性能はニューロンモデルパラメータのチューニングに大きく依存する。
本研究では,ニューロンハイパーパラメータ領域(特に膜時間定数タウと電圧しきい値vth)において,ネットワークが有意な活動と機能的行動を示す領域である操作空間を同定し,特徴付ける。
この多様体内での操作は、分類精度とスパイク活動の間に最適なトレードオフをもたらす一方、外部へ踏み出すと、過剰なエネルギー使用または完全なネットワークサイレントという、退化につながる。
データセットやアーキテクチャの体系的な探索を通じて、この多様体を可視化し、定量化し、効率的な操作点を同定する。
さらに, 対向雑音に対するロバスト性を評価したところ, SNNは, 最適領域の外での動作においてスパイク相関と内部同期が増大していることが判明した。
これらの知見は,タスク性能とエネルギー効率の両立を保証するために,原理的ハイパーパラメータチューニングの重要性を強調した。
この結果は、特にニューロモルフィックコンピューティングのシナリオにおいて、堅牢で効率的なSNNをデプロイするための実用的なガイドラインを提供する。
関連論文リスト
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Adaptively Pruned Spiking Neural Networks for Energy-Efficient Intracortical Neural Decoding [0.06181089784338582]
ニューロモルフィックハードウェア上でのニューラルネットワーク(SNN)のスパイキングは、ニューラルデコーディングにおいて顕著な効率性を示している。
本稿では,脳皮質内神経復号をターゲットとした,高アクティベーション領域を有するSNNを対象とした適応型プルーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-15T19:16:34Z) - Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
従来の人工ニューラルネットワーク(ANN)の代替手段としてスパイキングニューラルネットワーク(SNN)が登場
本稿では,AID,DOTA,DIORなどのリモートセンシングベンチマークにおいて,最先端の性能を実現するSpikeSRを提案する。
論文 参考訳(メタデータ) (2025-03-06T09:06:06Z) - DRiVE: Dynamic Recognition in VEhicles using snnTorch [0.0]
スパイキングニューラルネットワーク(SNN)は、イベント駆動設計を通じて効率的にデータを処理し、生物学的脳活動を模倣する。
この研究は、SNNとPyTorchの適応可能なフレームワークであるsnnTorchを組み合わせて、画像ベースのタスクの可能性をテストする。
DRiVEは、スパイキングニューロンダイナミクスを用いて画像の分類を行い、94.8%の精度とほぼ完璧な0.99AUCスコアを達成できる車両検出モデルである。
論文 参考訳(メタデータ) (2025-02-04T11:01:13Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる計算効率が高く生物学的に妥当な代替品として提案されている。
長距離依存タスクのためのスケーラブルな確率的スパイク学習フレームワークを開発した。
我々のモデルは、様々な長距離依存タスクにまたがるSNNモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T04:23:11Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。