論文の概要: Repeton: Structured Bug Repair with ReAct-Guided Patch-and-Test Cycles
- arxiv url: http://arxiv.org/abs/2506.08173v1
- Date: Mon, 09 Jun 2025 19:36:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:40.562924
- Title: Repeton: Structured Bug Repair with ReAct-Guided Patch-and-Test Cycles
- Title(参考訳): Repeton: Rect-Guided Patch-and-Test Cyclesによる構造的バグ修復
- Authors: Nguyen Phu Vinh, Anh Chung Hoang, Chris Ngo, Truong-Son Hy,
- Abstract要約: 大規模言語モデル(LLM)は、コード生成と理解において強力な能力を示しているが、複雑なソフトウェアエンジニアリングタスクへの応用は、しばしば低い精度と限定的な解釈可能性に悩まされている。
実世界のGitの正確かつ自動化されたコード操作にLLMを活用する、完全にオープンソースなフレームワークであるRepetonを紹介します。
- 参考スコア(独自算出の注目度): 1.387448620257867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown strong capabilities in code generation and comprehension, yet their application to complex software engineering tasks often suffers from low precision and limited interpretability. We present Repeton, a fully open-source framework that leverages LLMs for precise and automated code manipulation in real-world Git repositories. Rather than generating holistic fixes, Repeton operates through a structured patch-and-test pipeline: it iteratively diagnoses issues, proposes code changes, and validates each patch through automated testing. This stepwise process is guided by lightweight heuristics and development tools, avoiding reliance on embedding-based retrieval systems. Evaluated on the SWE-bench Lite benchmark, our method shows good performance compared to RAG-based methods in both patch validity and interpretability. By decomposing software engineering tasks into modular, verifiable stages, Repeton provides a practical path toward scalable and transparent autonomous debugging.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コード生成と理解において強力な能力を示しているが、複雑なソフトウェアエンジニアリングタスクへの応用は、しばしば低い精度と限定的な解釈可能性に悩まされている。
実世界のGitリポジトリの正確なコード操作と自動操作にLLMを活用する、完全にオープンソースなフレームワークであるRepetonを紹介します。
問題を反復的に診断し、コード変更を提案し、自動テストを通じて各パッチを検証する。
この段階的なプロセスは軽量なヒューリスティックと開発ツールによってガイドされ、埋め込みベースの検索システムへの依存を避ける。
SWE-bench Liteベンチマークで評価したところ、パッチの有効性と解釈可能性の両方において、RAGベースの手法と比較して優れた性能を示した。
ソフトウェアエンジニアリングタスクをモジュール的で検証可能なステージに分解することで、Repetonはスケーラブルで透過的な自律デバッグへの実践的なパスを提供する。
関連論文リスト
- SwingArena: Competitive Programming Arena for Long-context GitHub Issue Solving [90.32201622392137]
We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs)。
従来の静的ベンチマークとは異なり、SwingArenaはLLMをイテレーションとして組み合わせて、テストケースを作成し、継続的インテグレーション(CI)パイプラインを通じてパッチを検証するパッチとレビュアーを生成することで、ソフトウェアのコラボレーションプロセスをモデル化する。
論文 参考訳(メタデータ) (2025-05-29T18:28:02Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [81.12673534903979]
ツール学習は、大規模な言語モデル(LLM)にとって、外部ツールとのインタラクションを通じて、複雑な現実世界のタスクを解決する重要な機能として登場した。
本稿では,ツール学習をコード生成タスクとして再編成する新しいフレームワークであるToolCoderを提案する。
論文 参考訳(メタデータ) (2025-02-17T03:42:28Z) - SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer [0.0]
SuperCoder2.0は、人工知能によるソフトウェア開発を強化するために設計された高度な自律システムである。
システムは、AIネイティブな開発アプローチとインテリジェントエージェントを組み合わせて、完全に自律的なコーディングを可能にする。
論文 参考訳(メタデータ) (2024-09-17T13:44:42Z) - Fix the Tests: Augmenting LLMs to Repair Test Cases with Static Collector and Neural Reranker [9.428021853841296]
本稿では, TROCtxsの精密かつ高精度な構築により, 旧来の検査ケースを自動的に修復する新しい手法であるSynTERを提案する。
構築されたTROCtxの増強により、幻覚は57.1%減少する。
論文 参考訳(メタデータ) (2024-07-04T04:24:43Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgentはマルチエージェントのシナジーによる統合デバッグのためのエンドツーエンドフレームワークである。
1.25$times$ 2.56$times$レポレベルのベンチマークであるDefects4Jのバグを修正した。
論文 参考訳(メタデータ) (2024-04-26T04:55:35Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
新たな検索型パッチ生成フレームワーク(RAP-Gen)を提案する。
RAP-Gen 以前のバグ修正ペアのリストから取得した関連する修正パターンを明示的に活用する。
RAP-GenをJavaScriptのTFixベンチマークとJavaのCode RefinementとDefects4Jベンチマークの2つのプログラミング言語で評価する。
論文 参考訳(メタデータ) (2023-09-12T08:52:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。