AI-Assisted Rapid Crystal Structure Generation Towards a Target Local Environment
- URL: http://arxiv.org/abs/2506.08224v1
- Date: Mon, 09 Jun 2025 20:47:36 GMT
- Title: AI-Assisted Rapid Crystal Structure Generation Towards a Target Local Environment
- Authors: Osman Goni Ridwan, Sylvain PitiƩ, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu,
- Abstract summary: We present a symmetry-informed AI generative approach called Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal)<n>Our method generates initial structures using AI models trained on an augmented small dataset.<n>We demonstrate the effectiveness of LEGO-xtal by expanding from 25 known low-energy sp2 carbon allotropes to over 1,700, all within 0.5 eV/atom of the ground-state energy of graphite.
- Score: 1.925086802369111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of material design, traditional crystal structure prediction approaches require extensive structural sampling through computationally expensive energy minimization methods using either force fields or quantum mechanical simulations. While emerging artificial intelligence (AI) generative models have shown great promise in generating realistic crystal structures more rapidly, most existing models fail to account for the unique symmetries and periodicity of crystalline materials, and they are limited to handling structures with only a few tens of atoms per unit cell. Here, we present a symmetry-informed AI generative approach called Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal) that overcomes these limitations. Our method generates initial structures using AI models trained on an augmented small dataset, and then optimizes them using machine learning structure descriptors rather than traditional energy-based optimization. We demonstrate the effectiveness of LEGO-xtal by expanding from 25 known low-energy sp2 carbon allotropes to over 1,700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and next-generation battery materials.
Related papers
- Large Language Models Are Innate Crystal Structure Generators [30.44669215588058]
We show that pre-trained Large Language Models can inherently generate stable crystal structures without additional training.<n>Our framework MatLLMSearch integrates pre-trained LLMs with evolutionary search algorithms, achieving a 78.38% metastable rate.
arXiv Detail & Related papers (2025-02-28T10:41:16Z) - Active Learning for Conditional Inverse Design with Crystal Generation and Foundation Atomic Models [2.8408587358426725]
We present an active learning framework that combines crystal generation models and foundation atomic models to enhance the accuracy and efficiency of inverse design.<n>Our framework is general to accommodate different crystal generation and foundation atomic models, and establishes a scalable approach for AI-driven materials discovery.
arXiv Detail & Related papers (2025-02-24T09:15:38Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
We propose an approach for the quick and reliable screening of ionic conductors through the analysis of a universal interatomic potential.<n>Eight out of the ten highest-ranked materials are confirmed to be superionic at room temperature in first-principles calculations.<n>Our method achieves a speed-up factor of approximately 50 compared to molecular dynamics driven by a machine-learning potential, and is at least 3,000 times faster compared to first-principles molecular dynamics.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Unleashing the power of novel conditional generative approaches for new materials discovery [3.972733741872872]
We propose two generative approaches to the problem of crystal structure design.
One is conditional structure modification, using the energy difference between the most energetically favorable structure and all its less stable polymorphs.
The other is conditional structure generation, using the energy difference between the most energetically favorable structure and all its less stable polymorphs.
arXiv Detail & Related papers (2024-11-05T14:58:31Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.