Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2506.08234v1
- Date: Mon, 09 Jun 2025 21:04:14 GMT
- Title: Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions
- Authors: Yu-Ang Lee, Guan-Ting Yi, Mei-Yi Liu, Jui-Chao Lu, Guan-Bo Yang, Yun-Nung Chen,
- Abstract summary: Advances in large language models and AI systems have led to a paradigm shift in the design and optimization of complex AI.<n>This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques.<n>We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field.
- Score: 17.13738027020609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) and AI systems have led to a paradigm shift in the design and optimization of complex AI workflows. By integrating multiple components, compound AI systems have become increasingly adept at performing sophisticated tasks. However, as these systems grow in complexity, new challenges arise in optimizing not only individual components but also their interactions. While traditional optimization methods such as supervised fine-tuning (SFT) and reinforcement learning (RL) remain foundational, the rise of natural language feedback introduces promising new approaches, especially for optimizing non-differentiable systems. This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques. We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field. A list of surveyed papers is publicly available at https://github.com/MiuLab/AISysOpt-Survey.
Related papers
- A Survey of Context Engineering for Large Language Models [31.68644305980195]
This survey introduces Context Engineering, a formal discipline that transcends simple prompt design.<n>We first examine the foundational components: context retrieval and generation, context processing and context management.<n>We then explore how these components are architecturally integrated to create sophisticated system implementations.
arXiv Detail & Related papers (2025-07-17T17:50:36Z) - CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design [11.639825726501659]
Large language models (LLMs) can autonomously discover high-performings at a fraction of the traditional cost.<n>We propose a hybrid framework that combines verbal and numerical guidance.<n>Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks.
arXiv Detail & Related papers (2025-05-18T07:48:47Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Accelerated AI Inference via Dynamic Execution Methods [0.562479170374811]
We focus on Dynamic Execution techniques that optimize the computation flow based on input.
The techniques discussed include early exit from deep networks, speculative sampling for language models, and adaptive steps for diffusion models.
Experimental results demonstrate that these dynamic approaches can significantly improve latency and throughput without compromising quality.
arXiv Detail & Related papers (2024-10-30T12:49:23Z) - Training of Scaffolded Language Models with Language Supervision: A Survey [62.59629932720519]
This survey organizes the literature on the design and optimization of emerging structures around post-trained LMs.<n>We refer to this overarching structure as scaffolded LMs and focus on LMs that are integrated into multi-step processes with tools.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
The rapid development of large language models (LLMs) has significantly transformed the field of artificial intelligence.
These models are increasingly integrated into diverse applications, impacting both research and industry.
This paper surveys hardware and software co-design approaches specifically tailored to address the unique characteristics and constraints of large language models.
arXiv Detail & Related papers (2024-10-08T21:46:52Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems [1.204357447396532]
Novelty search (NS) refers to a class of exploration algorithms that automatically uncover diverse system behaviors through simulations or experiments.<n>We propose a sample-efficient NS method inspired by Bayesian optimization principles.<n>We show that BEACON comprehensively outperforms existing baselines by finding substantially larger sets of diverse behaviors under limited sampling budgets.
arXiv Detail & Related papers (2024-06-05T20:23:52Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data.
However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency.
This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective.
arXiv Detail & Related papers (2023-12-23T11:57:53Z) - AI-Empowered Hybrid MIMO Beamforming [85.48860461696417]
Hybrid multiple-input multiple-output (MIMO) systems implement part of their beamforming in analog and part in digital.
Recent years have witnessed a growing interest in using data-aided artificial intelligence (AI) tools for hybrid beamforming design.
This article reviews candidate strategies to leverage data to improve real-time hybrid beamforming design.
arXiv Detail & Related papers (2023-03-03T06:04:20Z) - Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner
with Evolution-Based Optimization [49.207538634692916]
We propose a new algorithm for circuit routing, named Ranking Cost, to form an efficient and trainable router.
In our method, we introduce a new set of variables called cost maps, which can help the A* router to find out proper paths.
Our algorithm is trained in an end-to-end manner and does not use any artificial data or human demonstration.
arXiv Detail & Related papers (2021-10-08T07:22:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.