Re4MPC: Reactive Nonlinear MPC for Multi-model Motion Planning via Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2506.08344v1
- Date: Tue, 10 Jun 2025 01:58:32 GMT
- Title: Re4MPC: Reactive Nonlinear MPC for Multi-model Motion Planning via Deep Reinforcement Learning
- Authors: Neşet Ünver Akmandor, Sarvesh Prajapati, Mark Zolotas, Taşkın Padır,
- Abstract summary: We propose a novel multi-model motion planning pipeline termed Re4MPC.<n>It computes trajectories in reaching end-effector goals using Model Predictive Control.<n>We show that Re4MPC is more computationally efficient and achieves higher success rates than the NMPC baseline.
- Score: 0.94371657253557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional motion planning methods for robots with many degrees-of-freedom, such as mobile manipulators, are often computationally prohibitive for real-world settings. In this paper, we propose a novel multi-model motion planning pipeline, termed Re4MPC, which computes trajectories using Nonlinear Model Predictive Control (NMPC). Re4MPC generates trajectories in a computationally efficient manner by reactively selecting the model, cost, and constraints of the NMPC problem depending on the complexity of the task and robot state. The policy for this reactive decision-making is learned via a Deep Reinforcement Learning (DRL) framework. We introduce a mathematical formulation to integrate NMPC into this DRL framework. To validate our methodology and design choices, we evaluate DRL training and test outcomes in a physics-based simulation involving a mobile manipulator. Experimental results demonstrate that Re4MPC is more computationally efficient and achieves higher success rates in reaching end-effector goals than the NMPC baseline, which computes whole-body trajectories without our learning mechanism.
Related papers
- Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing [11.313274230727549]
Motion Cueing Algorithms encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator.<n>This paper introduces a novel learning-based MCA for serial robot-based motion simulators.<n>By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates.
arXiv Detail & Related papers (2025-04-01T06:52:30Z) - Sample-Efficient Reinforcement Learning of Koopman eNMPC [42.72938925647165]
Reinforcement learning can be used to tune data-driven (economic) nonlinear model predictive controllers ((e)NMPCs) for optimal performance in a specific control task.<n>We combine a model-based RL algorithm with our published method that turns Koopman (e)NMPCs into automatically differentiable policies.
arXiv Detail & Related papers (2025-03-24T15:35:16Z) - Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
arXiv Detail & Related papers (2024-06-04T17:15:25Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
We develop new sample complexity results and performance guarantees for data-driven Model Predictive Control.
Our algorithm uses the structure of constrained linear MPC, and our analysis uses the properties of the explicit MPC solution to theoretically bound the number of online MPC trajectories needed to achieve optimal performance.
arXiv Detail & Related papers (2022-10-17T16:06:06Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
When the model is inaccurate or biased, imaginary trajectories may be deleterious for training the action-value and policy functions.
We adaptively reweight the imaginary transitions, so as to reduce the negative effects of poorly generated trajectories.
Our method outperforms state-of-the-art model-based and model-free RL algorithms on multiple tasks.
arXiv Detail & Related papers (2021-04-09T03:13:35Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.