Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
- URL: http://arxiv.org/abs/2504.00469v2
- Date: Wed, 09 Apr 2025 23:09:21 GMT
- Title: Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
- Authors: Camilo Gonzalez Arango, Houshyar Asadi, Mohammad Reza Chalak Qazani, Chee Peng Lim,
- Abstract summary: Motion Cueing Algorithms encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator.<n>This paper introduces a novel learning-based MCA for serial robot-based motion simulators.<n>By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates.
- Score: 11.313274230727549
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
Related papers
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
Gaussian process state-space models (GPSSMs) have emerged as a powerful framework for modeling dynamical systems.<n>We propose an efficient transformed Gaussian process state-space model (ETGPSSM) to address these limitations.<n>Our approach leverages a single shared Gaussian process (GP) combined with normalizing flows and Bayesian neural networks, enabling efficient modeling of complex, high-dimensional state transitions.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Physics Informed Neural Networks for Phase Locked Loop Transient
Stability Assessment [0.0]
Using power-electronic controllers, such as Phase Locked Loops (PLLs), to keep grid-tied renewable resources in synchronism with the grid can cause fast transient behavior during grid faults leading to instability.
This paper proposes a Neural Network algorithm that accurately predicts the transient dynamics of a controller under fault with less labeled training data.
The algorithm's performance is compared against a ROM and an EMT simulation in PSCAD for the CIGRE benchmark model C4.49, demonstrating its ability to accurately approximate trajectories and ROAs of a controller under varying grid impedance.
arXiv Detail & Related papers (2023-03-21T18:09:20Z) - Learning Control from Raw Position Measurements [13.79048931313603]
We propose a Model-Based Reinforcement Learning (MBRL) algorithm named VF-MC-PILCO.
It is specifically designed for application to mechanical systems where velocities cannot be directly measured.
arXiv Detail & Related papers (2023-01-30T18:50:37Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
This work proposes an integral reinforcement learning (IRL) based approach to learning the macroscopic traffic dynamics for adaptive optimal perimeter control.
To reduce the sampling complexity and use the available data more efficiently, the experience replay (ER) technique is introduced to the IRL algorithm.
The convergence of the IRL-based algorithms and the stability of the controlled traffic dynamics are proven via the Lyapunov theory.
arXiv Detail & Related papers (2022-09-13T04:28:49Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - MotionHint: Self-Supervised Monocular Visual Odometry with Motion
Constraints [70.76761166614511]
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO)
Our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems.
arXiv Detail & Related papers (2021-09-14T15:35:08Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Application of an automated machine learning-genetic algorithm
(AutoML-GA) coupled with computational fluid dynamics simulations for rapid
engine design optimization [0.0]
The present work describes and validates an automated active learning approach, AutoML-GA, for surrogate-based optimization of internal combustion engines.
A genetic algorithm is employed to locate the design optimum on the machine learning surrogate surface.
It is demonstrated that AutoML-GA leads to a better optimum with a lower number of CFD simulations.
arXiv Detail & Related papers (2021-01-07T17:50:52Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.