TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization
- URL: http://arxiv.org/abs/2506.08440v2
- Date: Wed, 11 Jun 2025 04:42:44 GMT
- Title: TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization
- Authors: Zengjue Chen, Runliang Niu, He Kong, Qi Wang,
- Abstract summary: Recent advances in Vision-Language-Action model have demonstrated strong generalization capabilities across diverse scenes, tasks, and robotic platforms when pretrained at large-scale datasets.<n>These models still require task-specific fine-tuning in novel environments, a process that relies almost exclusively on supervised fine-tuning (SFT) using static trajectory datasets.<n>In this work, we propose the Trajectory-wise Group Relative Policy Optimization (TGRPO) method.
- Score: 6.711303205726428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Vision-Language-Action (VLA) model have demonstrated strong generalization capabilities across diverse scenes, tasks, and robotic platforms when pretrained at large-scale datasets. However, these models still require task-specific fine-tuning in novel environments, a process that relies almost exclusively on supervised fine-tuning (SFT) using static trajectory datasets. Such approaches neither allow robot to interact with environment nor do they leverage feedback from live execution. Also, their success is critically dependent on the size and quality of the collected trajectories. Reinforcement learning (RL) offers a promising alternative by enabling closed-loop interaction and aligning learned policies directly with task objectives. In this work, we draw inspiration from the ideas of GRPO and propose the Trajectory-wise Group Relative Policy Optimization (TGRPO) method. By fusing step-level and trajectory-level advantage signals, this method improves GRPO's group-level advantage estimation, thereby making the algorithm more suitable for online reinforcement learning training of VLA. Experimental results on ten manipulation tasks from the libero-object benchmark demonstrate that TGRPO consistently outperforms various baseline methods, capable of generating more robust and efficient policies across multiple tested scenarios. Our source codes are available at: https://github.com/hahans/TGRPO
Related papers
- Test-time Offline Reinforcement Learning on Goal-related Experience [50.94457794664909]
Research in foundation models has shown that performance can be substantially improved through test-time training.<n>We propose a novel self-supervised data selection criterion, which selects transitions from an offline dataset according to their relevance to the current state.<n>Our goal-conditioned test-time training (GC-TTT) algorithm applies this routine in a receding-horizon fashion during evaluation, adapting the policy to the current trajectory as it is being rolled out.
arXiv Detail & Related papers (2025-07-24T21:11:39Z) - Reinforced Reasoning for Embodied Planning [18.40186665383579]
Embodied planning requires agents to make coherent multi-step decisions based on dynamic visual observations and natural language goals.<n>We introduce a reinforcement fine-tuning framework that brings R1-style reasoning enhancement into embodied planning.
arXiv Detail & Related papers (2025-05-28T07:21:37Z) - ARPO:End-to-End Policy Optimization for GUI Agents with Experience Replay [88.74638385288773]
Agentic Replay Policy Optimization improves performance on complex, long-horizon computer tasks.<n>We propose a task selection strategy that filters tasks based on baseline agent performance.<n>Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results.
arXiv Detail & Related papers (2025-05-22T06:24:32Z) - Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach [2.8626097661711394]
Reinforcement Learning from Human Feedback has achieved notable success in steering models, but is complex and can be unstable.<n>Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives.<n>We propose a Group Relative Policy Optimization framework with a multi-label reward regression model to achieve safe and aligned language generation.
arXiv Detail & Related papers (2025-03-26T05:50:33Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)<n>Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.<n>In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - RLDG: Robotic Generalist Policy Distillation via Reinforcement Learning [53.8293458872774]
We propose Reinforcement Learning Distilled Generalists (RLDG) to generate high-quality training data for finetuning generalist policies.<n>We demonstrate that generalist policies trained with RL-generated data consistently outperform those trained with human demonstrations.<n>Our results suggest that combining task-specific RL with generalist policy distillation offers a promising approach for developing more capable and efficient robotic manipulation systems.
arXiv Detail & Related papers (2024-12-13T04:57:55Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
arXiv Detail & Related papers (2024-08-07T19:30:08Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Learning Off-Policy with Online Planning [18.63424441772675]
We investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function.
We show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments.
arXiv Detail & Related papers (2020-08-23T16:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.