How to Provably Improve Return Conditioned Supervised Learning?
- URL: http://arxiv.org/abs/2506.08463v1
- Date: Tue, 10 Jun 2025 05:37:51 GMT
- Title: How to Provably Improve Return Conditioned Supervised Learning?
- Authors: Zhishuai Liu, Yu Yang, Ruhan Wang, Pan Xu, Dongruo Zhou,
- Abstract summary: We propose a principled and simple framework called Reinforced RCSL.<n>Key innovation of our framework is the introduction of a concept we call the in-distribution optimal return-to-go.<n>Our theoretical analysis demonstrates that Reinforced RCSL can consistently outperform the standard RCSL approach.
- Score: 26.915055027485465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In sequential decision-making problems, Return-Conditioned Supervised Learning (RCSL) has gained increasing recognition for its simplicity and stability in modern decision-making tasks. Unlike traditional offline reinforcement learning (RL) algorithms, RCSL frames policy learning as a supervised learning problem by taking both the state and return as input. This approach eliminates the instability often associated with temporal difference (TD) learning in offline RL. However, RCSL has been criticized for lacking the stitching property, meaning its performance is inherently limited by the quality of the policy used to generate the offline dataset. To address this limitation, we propose a principled and simple framework called Reinforced RCSL. The key innovation of our framework is the introduction of a concept we call the in-distribution optimal return-to-go. This mechanism leverages our policy to identify the best achievable in-dataset future return based on the current state, avoiding the need for complex return augmentation techniques. Our theoretical analysis demonstrates that Reinforced RCSL can consistently outperform the standard RCSL approach. Empirical results further validate our claims, showing significant performance improvements across a range of benchmarks.
Related papers
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormer is a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network.
Our experiments reveal that CompoFormer outperforms conventional continual learning (CL) methods, particularly in longer task sequences.
arXiv Detail & Related papers (2024-11-18T08:20:21Z) - Efficient Recurrent Off-Policy RL Requires a Context-Encoder-Specific Learning Rate [4.6659670917171825]
Recurrent reinforcement learning (RL) consists of a context encoder based on recurrent neural networks (RNNs) for unobservable state prediction.
Previous RL methods face training stability issues due to the gradient instability of RNNs.
We propose Recurrent Off-policy RL with Context-Encoder-Specific Learning Rate (RESeL) to tackle this issue.
arXiv Detail & Related papers (2024-05-24T09:33:47Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.<n>In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.<n>We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Adaptive $Q$-Aid for Conditional Supervised Learning in Offline Reinforcement Learning [20.07425661382103]
$Q$-Aided Conditional Supervised Learning combines stability of RCSL with the stitching capability of $Q$-functions.
QCS adaptively integrates $Q$-aid into RCSL's loss function based on trajectory return.
arXiv Detail & Related papers (2024-02-03T04:17:09Z) - Critic-Guided Decision Transformer for Offline Reinforcement Learning [28.211835303617118]
Critic-Guided Decision Transformer (CGDT)
Uses predictability of long-term returns from value-based methods with the trajectory modeling capability of the Decision Transformer.
Builds upon these insights, we propose a novel approach, which combines the predictability of long-term returns from value-based methods with the trajectory modeling capability of the Decision Transformer.
arXiv Detail & Related papers (2023-12-21T10:29:17Z) - When does return-conditioned supervised learning work for offline
reinforcement learning? [51.899892382786526]
We study the capabilities and limitations of return-conditioned supervised learning.
We find that RCSL returns the optimal policy under a set of assumptions stronger than those needed for the more traditional dynamic programming-based algorithms.
arXiv Detail & Related papers (2022-06-02T15:05:42Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Conservative Q-Learning for Offline Reinforcement Learning [106.05582605650932]
We show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return.
We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees.
arXiv Detail & Related papers (2020-06-08T17:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.