Scaling Portfolio Diversification with Quantum Circuit Cutting Techniques
- URL: http://arxiv.org/abs/2506.08947v1
- Date: Tue, 10 Jun 2025 16:08:29 GMT
- Title: Scaling Portfolio Diversification with Quantum Circuit Cutting Techniques
- Authors: Vicente P. Soloviev, Antonio Márquez Romero, Josh Kirsopp, Michal Krompiec,
- Abstract summary: We introduce QuantCut, an automatic framework for circuit cutting that enables efficient execution of large quantum circuits.<n>We apply QuantCut to a 71-qubit QAOA circuit ansatz for portfolio diversification in the S&P 500 stock market, aiming to maximize asset diversification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Approximate Optimization Algorithms (QAOA) have demonstrated a strong potential in addressing graph-based optimization problems. However, the execution of large-scale quantum circuits remains constrained by the limitations of current quantum hardware. In this work, we introduce QuantCut, an automatic framework for circuit cutting that enables efficient execution of large quantum circuits by decomposing entangling two-qubit gates into manageable sub-circuits. Specifically, we focus on gate-cutting techniques. We apply QuantCut to a 71-qubit QAOA circuit ansatz for portfolio diversification in the S&P 500 stock market, aiming to maximize asset diversification. Our approach iteratively optimizes the expectation value while leveraging circuit-cutting strategies to reduce the qubit register size. To validate our framework, we first conduct experiments on a toy model using quantum noise simulations for the Max-Cut problem, analyzing performance improvements with an increasing number of layers. Subsequently, we extend our methodology to a real-world financial optimization scenario, showing competitive results. The results suggest that QuantCut effectively facilitates large-scale quantum computations with circuit-cutting technologies.
Related papers
- Efficient Variational Quantum Algorithms via Circuit Knitting and Architecture Search [14.667623160371013]
We introduce CKVQA, a framework that applies circuit knitting to variational quantum algorithms (VQAs)<n>CKVQA aims to minimize the sampling overhead by identifying parameterized quantum circuits that achieve a favorable balance between algorithmic performance and sampling overhead.<n>We have developed a subcircuit-level optimization method to accelerate the training of VQAs and reduce overall execution time.
arXiv Detail & Related papers (2025-08-05T12:27:19Z) - CutQAS: Topology-aware quantum circuit cutting via reinforcement learning [0.0]
We propose CutQAS, a framework that integrates quantum circuit cutting with quantum architecture search (QAS) to enhance quantum chemistry simulations.<n>First, an RL agent explores all possible topologies to identify an optimal circuit structure. Subsequently, a second RL agent refines the selected topology by determining optimal circuit cuts, ensuring efficient execution on constrained hardware.
arXiv Detail & Related papers (2025-04-05T13:13:50Z) - Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Hardware-Conscious Optimization of the Quantum Toffoli Gate [11.897854272643634]
This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level.
We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization.
Our optimized Toffoli gate implementation demonstrates an $18%$ reduction in infidelity compared with the canonical implementation.
arXiv Detail & Related papers (2022-09-06T17:29:22Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.