Tuning the the fundamental periodicity of the current-phase relation in multiterminal diffusive Josephson junctions
- URL: http://arxiv.org/abs/2506.08985v1
- Date: Tue, 10 Jun 2025 16:58:32 GMT
- Title: Tuning the the fundamental periodicity of the current-phase relation in multiterminal diffusive Josephson junctions
- Authors: Venkat Chandrasekhar,
- Abstract summary: A Josephson junction with 4 superconducting contacts can show a current phase relation between two of the contacts that is a superposition of 2pi and 4pi periodic components.<n>This tunability might have applications in tailoring the Hamiltonians of superconducting quantum circuits.
- Score: 3.667849832599749
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Conventional superconductor/insulator/superconductor (SIS) Josephson junctions, devices where two superconductors are separated by a tunnel barrier are technologically important as elements in quantum circuits, particularly with their key role in superconducting qubits. An important characteristic of Josephson junctions is the relation between the supercurrent Is and the phase difference {\phi} between them. For SIS junctions, the current-phase relation is sinusioidal and 2{\pi} periodic. Other types of Josephson junctions, where the material between the superconductors is a weak link or a normal metal (N) may have non-sinusoidal current-phase relations that are still 2{\pi} periodic. We show here that a multi-terminal diffusive SNS Josephson junction with 4 superconducting contacts can show a current phase relation between two of the contacts that is a superposition of 2{\pi} and 4{\pi} periodic components whose relative strength is controlled by the phase difference between the other two contacts, becoming 2{\pi} or 4{\pi} periodic for certain values of this phase difference. This tunability might have applications in tailoring the Hamiltonians of superconducting quantum circuits.
Related papers
- Emergent Harmonics in Josephson Tunnel Junctions Due to Series Inductance [0.3224744665128102]
Josephson tunnel junctions are essential elements of superconducting quantum circuits.<n>Two potential sources for harmonics are the intrinsic current-phase relationship of the Josephson junction and the inductance of the traces connecting the junction to other circuit elements.
arXiv Detail & Related papers (2025-07-10T21:03:56Z) - Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.<n>For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Steady-state dynamics and non-local correlations in thermoelectric Cooper pair splitters [43.62395775086322]
Recent experiments on Cooper pair splitters using superconductor-quantum dot hybrids have embarked on creating entanglement in the solid-state.<n>We present a comprehensive analysis of the fundamental components of the observed transport signal.<n>Our work provides detailed insights into the gate voltage control of the quantum correlations in superconducting-hybrid Cooper pair splitters.
arXiv Detail & Related papers (2024-06-10T06:46:10Z) - Tunneling of fluxons via a Josephson resonant level [0.0]
A superconducting loop can be coherently coupled by quantum phase slips occurring at a weak link such as a Josephson junction.
We analyze this scenario by computing the coupling between fluxons as the level is brought into resonance with the superconducting condensate.
These findings can inform experiments on bifluxon qubits as well as the design of novel types of protected qubits.
arXiv Detail & Related papers (2023-10-04T18:33:30Z) - Majorana bound states in d-wave superconductor planar Josephson junction [0.0]
We study phase-controlled Josephson junctions comprising a two-dimensional electron gas with strong spin-orbit coupling and d-wave superconductors.
We show that a region between the two superconductors can be tuned into a topological state by the in-plane Zeeman field, and can host Majorana bound states.
arXiv Detail & Related papers (2023-07-27T19:36:42Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Multi-band Bose-Einstein condensate at four-particle scattering
resonance [47.187609203210705]
We show that magnon quantization for thin samples results in a new multi-band magnon condensate.
The most stable multi-band condensate is found in a narrow regime favoured on account of a resonance in the scattering between two bands.
arXiv Detail & Related papers (2022-01-26T16:32:58Z) - Demonstration of long-range correlations via susceptibility measurements
in a one-dimensional superconducting Josephson spin chain [39.24184167771873]
In this work, we explore the properties of a spin chain implemented with superconducting flux circuits.
The susceptibility of the chain is probed and shown to support long-range, cross chain correlations.
arXiv Detail & Related papers (2021-11-08T05:59:04Z) - Magnifying quantum phase fluctuations with Cooper-pair pairing [0.0]
We fabricate a generalized Josephson element that can be tuned in situ between one- and two-Cooper-pair tunneling.
We measure a tenfold suppression of flux sensitivity of the first transition energy, implying a twofold increase in the vacuum phase fluctuations.
arXiv Detail & Related papers (2020-10-29T11:15:22Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.