Majorana bound states in d-wave superconductor planar Josephson junction
- URL: http://arxiv.org/abs/2307.15162v2
- Date: Tue, 7 Nov 2023 00:38:49 GMT
- Title: Majorana bound states in d-wave superconductor planar Josephson junction
- Authors: Hamed Vakili, Moaz Ali, Mohamed Elekhtiar, Alexey A. Kovalev
- Abstract summary: We study phase-controlled Josephson junctions comprising a two-dimensional electron gas with strong spin-orbit coupling and d-wave superconductors.
We show that a region between the two superconductors can be tuned into a topological state by the in-plane Zeeman field, and can host Majorana bound states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study phase-controlled planar Josephson junctions comprising a
two-dimensional electron gas with strong spin-orbit coupling and d-wave
superconductors, which have an advantage of high critical temperature. We show
that a region between the two superconductors can be tuned into a topological
state by the in-plane Zeeman field, and can host Majorana bound states. The
phase diagram as a function of the Zeeman field, chemical potential, and the
phase difference between superconductors exhibits the appearance of Majorana
bound states for a wide range of parameters. We further investigate the
behavior of the topological gap and its dependence on the type of d-wave
pairing, i.e., d, d+is, or d+id', and note the difficulties that can arise due
to the presence of gapless excitations in pure d-wave superconductors. On the
other hand, the planar Josephson junctions based on superconductors with d+is
and d+id' pairings can potentially lead to realizations of Majorana bound
states. Our proposal can be realized in cuprate superconductors, e.g., in a
twisted bilayer, combined with the layered semiconductor Bi2O2Se.
Related papers
- Evidence of P-wave Pairing in K2Cr3As3 Superconductors from Phase-sensitive Measurement [26.69408771617283]
We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K2Cr3As3.
We observe that SQUIDs exhibit a pronounced second-order harmonic component sin(2phi) in the current-phase relation.
We conclude that the existence of the pi-phase is in favor of the p-wave pairing symmetry in K2Cr3As3.
arXiv Detail & Related papers (2024-08-14T07:34:45Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Observation of Distinct Superconducting Phases in Hyperdoped p-type
Germanium [0.0]
We report systematic synthesis and characterization of superconducting phases in hyperdoped Germanium.
Surprisingly, we find a nano-crystalline phase with quasi-2D characteristics consisting of a thin Ga film constrained near top surfaces.
Our results suggest the possibility of integration of hyperdoped Ge nano-crystalline phase into superconducting circuits due to its 2D nature.
arXiv Detail & Related papers (2020-08-13T18:06:40Z) - Optically induced topological superconductivity via Floquet interaction
engineering [0.0]
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure.
We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced.
arXiv Detail & Related papers (2020-08-10T18:17:36Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Topological superconductor from superconducting topological surface
states and fault-tolerant quantum computing [6.394072140094434]
A widely believed chiral $p$-wave superfluid is the Moore-Read state in the $nu=frac52$ fractional quantum Hall effect.
Here we report a new mechanism for realizing 2D chiral $p$-wave superconductors on the surface of 3D $s$-wave superconductors.
arXiv Detail & Related papers (2020-03-26T06:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.