Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
- URL: http://arxiv.org/abs/2506.08990v1
- Date: Tue, 10 Jun 2025 17:02:27 GMT
- Title: Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
- Authors: Chenyu Lian, Hong-Yu Zhou, Dongyun Liang, Jing Qin, Liansheng Wang,
- Abstract summary: Cross-modal contrastive learning (CLIP) methods suffer from suboptimal visual representation capabilities.<n>We propose ALTA (ALign Through Adapting), an efficient vision-language alignment method that utilizes only about 8% of the trainable parameters.<n>ALTA superior performance in vision-language matching tasks like retrieval and zero-shot classification by adapting the pretrained vision model from masked record modeling.
- Score: 29.571937393873444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical vision-language alignment through cross-modal contrastive learning shows promising performance in image-text matching tasks, such as retrieval and zero-shot classification. However, conventional cross-modal contrastive learning (CLIP-based) methods suffer from suboptimal visual representation capabilities, which also limits their effectiveness in vision-language alignment. In contrast, although the models pretrained via multimodal masked modeling struggle with direct cross-modal matching, they excel in visual representation. To address this contradiction, we propose ALTA (ALign Through Adapting), an efficient medical vision-language alignment method that utilizes only about 8% of the trainable parameters and less than 1/5 of the computational consumption required for masked record modeling. ALTA achieves superior performance in vision-language matching tasks like retrieval and zero-shot classification by adapting the pretrained vision model from masked record modeling. Additionally, we integrate temporal-multiview radiograph inputs to enhance the information consistency between radiographs and their corresponding descriptions in reports, further improving the vision-language alignment. Experimental evaluations show that ALTA outperforms the best-performing counterpart by over 4% absolute points in text-to-image accuracy and approximately 6% absolute points in image-to-text retrieval accuracy. The adaptation of vision-language models during efficient alignment also promotes better vision and language understanding. Code is publicly available at https://github.com/DopamineLcy/ALTA.
Related papers
- UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation [31.72930277939111]
We propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts.<n>To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task.
arXiv Detail & Related papers (2025-03-20T08:28:53Z) - MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations [13.991376926757036]
We propose MedUnifier, a unified Vision-Language Pre-Training framework tailored for medical data.<n>MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies.<n>Our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality.
arXiv Detail & Related papers (2025-03-02T21:09:32Z) - LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
State-of-the-art medical multi-modal large language models (med-MLLM) leverage instruction-following data in pre-training.
LoGra-Med is a new multi-graph alignment algorithm that enforces triplet correlations across image modalities, conversation-based descriptions, and extended captions.
Our results show LoGra-Med matches LLAVA-Med performance on 600K image-text pairs for Medical VQA and significantly outperforms it when trained on 10% of the data.
arXiv Detail & Related papers (2024-10-03T15:52:03Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Contrastive Vision-Language Alignment Makes Efficient Instruction
Learner [31.281236193979165]
We study the task of extending the large language model (LLM) into a vision-language instruction-following model.
Existing methods typically train a visual adapter to align the representation between a pre-trained vision transformer (ViT) and the LLM by a generative image captioning loss.
We propose CG-VLM that applies Contrastive and Generative alignment objectives to effectively align the representation of ViT and LLM.
arXiv Detail & Related papers (2023-11-29T03:29:46Z) - ALIP: Adaptive Language-Image Pre-training with Synthetic Caption [78.93535202851278]
Contrastive Language-Image Pre-training (CLIP) has significantly boosted the performance of various vision-language tasks.
The presence of intrinsic noise and unmatched image-text pairs in web data can potentially affect the performance of representation learning.
We propose an Adaptive Language-Image Pre-training (ALIP), a bi-path model that integrates supervision from both raw text and synthetic caption.
arXiv Detail & Related papers (2023-08-16T15:19:52Z) - CAVL: Learning Contrastive and Adaptive Representations of Vision and
Language [10.57079240576682]
Visual and linguistic pre-training aims to learn vision and language representations together.
Current pre-trained models tend to take lots of computation resources for fine-tuning when transferred to downstream tasks.
We present a simple but effective approach for learning Contrastive and Adaptive representations of Vision and Language, namely CAVL.
arXiv Detail & Related papers (2023-04-10T05:54:03Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.