論文の概要: BG-HOP: A Bimanual Generative Hand-Object Prior
- arxiv url: http://arxiv.org/abs/2506.09068v1
- Date: Sun, 08 Jun 2025 19:33:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.628051
- Title: BG-HOP: A Bimanual Generative Hand-Object Prior
- Title(参考訳): BG-HOP: 双方向生成ハンドオブジェクト
- Authors: Sriram Krishna, Sravan Chittupalli, Sungjae Park,
- Abstract要約: 本稿では,BG-HOPについて述べる。BG-HOP,BG-HOP,BG-HOP,BG-HOP,BG-HOP,BG-HOP,BG-HOP,BG-HOPを3Dでモデル化する。
実験では、モデルがバイマン的相互作用を生成し、与えられた対象のグリップを合成する能力を示す。
- 参考スコア(独自算出の注目度): 1.6590638305972631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present BG-HOP, a generative prior that seeks to model bimanual hand-object interactions in 3D. We address the challenge of limited bimanual interaction data by extending existing single-hand generative priors, demonstrating preliminary results in capturing the joint distribution of hands and objects. Our experiments showcase the model's capability to generate bimanual interactions and synthesize grasps for given objects. We make code and models publicly available.
- Abstract(参考訳): 本稿では,BG-HOPについて述べる。BG-HOPはBG-HOPとBG-HOPとBG-HOPの相互作用をモデル化する。
本研究は、手と物体の関節の分布を捉えるための予備的な結果を実証し、既存の手と手との相互作用を拡大することで、限られた双方向インタラクションデータの課題に対処する。
実験では、モデルがバイマン的相互作用を生成し、与えられた対象のグリップを合成する能力を示す。
コードとモデルを公開しています。
関連論文リスト
- HOGSA: Bimanual Hand-Object Interaction Understanding with 3D Gaussian Splatting Based Data Augmentation [29.766317710266765]
本稿では,2次元手動物体間相互作用のための3次元ガウススプラッティングに基づくデータ拡張フレームワークを提案する。
メッシュベースの3DGSを用いてオブジェクトとハンドをモデル化し、マルチレゾリューション入力画像によるレンダリングのぼかし問題に対処する。
両手オブジェクトに対する片手握りポーズ最適化モジュールを拡張し、両手オブジェクト間相互作用のさまざまなポーズを生成する。
論文 参考訳(メタデータ) (2025-01-06T08:48:17Z) - BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects [70.20706475051347]
BimArtは3Dバイマニュアルハンドインタラクションを音声オブジェクトと合成するための新しい生成手法である。
まず, 物体軌道上に配置された距離ベースの接触マップを, 音声認識特徴表現を用いて生成する。
学習された接触は手の動き生成装置のガイドに使われ、物体の動きや調音のための多彩で現実的なバイマニュアルの動きが生成されます。
論文 参考訳(メタデータ) (2024-12-06T14:23:56Z) - Multi-Modal Diffusion for Hand-Object Grasp Generation [31.142035354489305]
本研究では,物体の握手に焦点をあてる。
対象物を用いてポーズを生成する従来の手法と比較して,手と物体の形状を1つのモデルで一般化することを目指している。
提案手法は,多モードグラフ拡散法(MGD)を用いて,不均一なデータソースから両モードの事前および条件付き後部分布を学習する。
論文 参考訳(メタデータ) (2024-09-06T18:47:14Z) - G-HOP: Generative Hand-Object Prior for Interaction Reconstruction and Grasp Synthesis [57.07638884476174]
G-HOPは手-対象相互作用の前駆体である。
人手は骨格距離場を介して表現し、物体の符号付き距離場と整合した表現を得る。
この手動物体は、対話クリップからの再構成や人間のつかみ合成など、他の作業を容易にするための汎用的なガイダンスとして機能することを示す。
論文 参考訳(メタデータ) (2024-04-18T17:59:28Z) - HOIDiffusion: Generating Realistic 3D Hand-Object Interaction Data [42.49031063635004]
本研究では,現実的かつ多様な3次元ハンドオブジェクトインタラクションデータを生成するためのHOIDiffusionを提案する。
本モデルは,3次元手対象幾何学構造とテキスト記述を画像合成の入力として用いた条件拡散モデルである。
生成した3Dデータを6次元オブジェクトのポーズ推定学習に適用し,認識システムの改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-03-18T17:48:31Z) - HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video [70.11702620562889]
HOLD - 単分子インタラクションビデオから手とオブジェクトを共同で再構成する最初のカテゴリーに依存しない方法。
我々は,3次元手と物体を2次元画像から切り離すことができる構成的明瞭な暗黙モデルを開発した。
本手法は,3次元手オブジェクトアノテーションに頼らず,組込みと組込みの両面において,完全教師付きベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-30T10:50:35Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
手は器用で多用途なマニピュレータであり、人間が物体や環境とどのように相互作用するかの中心である。
現実的な手オブジェクトの相互作用をモデル化することは、コンピュータグラフィックス、コンピュータビジョン、混合現実の応用において重要である。
GRIPは、体と物体の3次元運動を入力として取り、物体の相互作用の前、中、後の両方の両手の現実的な動きを合成する学習ベースの手法である。
論文 参考訳(メタデータ) (2023-08-22T17:59:51Z) - ContactArt: Learning 3D Interaction Priors for Category-level Articulated Object and Hand Poses Estimation [46.815231896011284]
そこで我々は,手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動・手動の
まず、視覚的遠隔操作を用いてデータセットを収集し、人間のオペレーターが物理的シミュレータ内で直接プレイすることで、調音されたオブジェクトを操作できる。
私たちのシステムでは、人手の動きを記録するためにiPhoneしか必要とせず、簡単にスケールアップでき、データやアノテーションの収集コストを大幅に削減できます。
論文 参考訳(メタデータ) (2023-05-02T17:24:08Z) - H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition [70.46638409156772]
両手操作対象のマーカーレス3Dアノテーションを用いて,エゴセントリックな対話認識のための包括的なフレームワークを提案する。
本手法は,2つの手の3次元ポーズと操作対象の6次元ポーズのアノテーションと,それぞれのフレームのインタラクションラベルを生成する。
我々のデータセットは、H2O (2 Hands and Objects)と呼ばれ、同期されたマルチビューRGB-D画像、対話ラベル、オブジェクトクラス、左右の手でのグラウンドトルース3Dポーズ、6Dオブジェクトポーズ、グラウンドトルースカメラポーズ、オブジェクトメッシュ、シーンポイントクラウドを提供する。
論文 参考訳(メタデータ) (2021-04-22T17:10:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。