論文の概要: FAIRTOPIA: Envisioning Multi-Agent Guardianship for Disrupting Unfair AI Pipelines
- arxiv url: http://arxiv.org/abs/2506.09107v1
- Date: Tue, 10 Jun 2025 17:02:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.758777
- Title: FAIRTOPIA: Envisioning Multi-Agent Guardianship for Disrupting Unfair AI Pipelines
- Title(参考訳): FAIRTOPIA: 不安定なAIパイプラインをディスラプトするためのマルチエージェントガーディアンの構想
- Authors: Athena Vakali, Ilias Dimitriadis,
- Abstract要約: AIモデルは積極的な意思決定者となり、しばしば人間の監督なしに行動している。
エージェントは彼らの環境から学ぶので、公正な保護者としてエージェントを想定する。
本稿では,マルチロールエージェントをエンドツーエンド(人間からAI)のシナジースキームに組み込むフェアネス・バイ・デザイン手法を提案する。
- 参考スコア(独自算出の注目度): 1.556153237434314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI models have become active decision makers, often acting without human supervision. The rapid advancement of AI technology has already caused harmful incidents that have hurt individuals and societies and AI unfairness in heavily criticized. It is urgent to disrupt AI pipelines which largely neglect human principles and focus on computational biases exploration at the data (pre), model(in), and deployment (post) processing stages. We claim that by exploiting the advances of agents technology, we will introduce cautious, prompt, and ongoing fairness watch schemes, under realistic, systematic, and human-centric fairness expectations. We envision agents as fairness guardians, since agents learn from their environment, adapt to new information, and solve complex problems by interacting with external tools and other systems. To set the proper fairness guardrails in the overall AI pipeline, we introduce a fairness-by-design approach which embeds multi-role agents in an end-to-end (human to AI) synergetic scheme. Our position is that we may design adaptive and realistic AI fairness frameworks, and we introduce a generalized algorithm which can be customized to the requirements and goals of each AI decision making scenario. Our proposed, so called FAIRTOPIA framework, is structured over a three-layered architecture, which encapsulates the AI pipeline inside an agentic guardian and a knowledge-based, self-refining layered scheme. Based on our proposition, we enact fairness watch in all of the AI pipeline stages, under robust multi-agent workflows, which will inspire new fairness research hypothesis, heuristics, and methods grounded in human-centric, systematic, interdisciplinary, socio-technical principles.
- Abstract(参考訳): AIモデルは積極的な意思決定者となり、しばしば人間の監督なしに行動している。
AI技術の急速な進歩は、個人や社会を傷つける有害なインシデントや、厳しく批判されたAIの不公平を既に引き起こしている。
人間の原則をほとんど無視し、データ(pre)、モデル(in)、デプロイメント(post)処理段階における計算バイアス探索に注力するAIパイプラインをディスラプトするのは緊急です。
我々はエージェント技術の進歩を生かして、現実的で体系的で人間中心の公正な期待の下で、慎重で、刺激的で、進行中の公正な監視スキームを導入する。
エージェントは彼らの環境から学び、新しい情報に適応し、外部ツールや他のシステムと対話することで複雑な問題を解決するため、公正な保護者としてエージェントを想定する。
AIパイプライン全体のフェアネスガードレールを適切に設定するために、マルチロールエージェントをエンドツーエンド(人間からAI)のシナジースキームに組み込むフェアネス・バイ・デザインアプローチを導入する。
我々の立場では、適応的で現実的なAIフェアネスフレームワークを設計し、各AI意思決定シナリオの要件と目標に合わせてカスタマイズ可能な一般化アルゴリズムを導入することができる。
提案したFAIRTOPIAフレームワークは、3層アーキテクチャ上に構築されており、エージェント保護層と知識に基づく自己精製層スキーム内にAIパイプラインをカプセル化している。
提案に基づき、我々はAIパイプラインのすべての段階において、堅牢なマルチエージェントワークフローの下で公正な監視を行うことで、人間中心、体系的、学際的、社会技術的原則に基づく新しい公正研究仮説、ヒューリスティックス、メソッドを刺激する。
関連論文リスト
- Neurodivergent Influenceability as a Contingent Solution to the AI Alignment Problem [1.3905735045377272]
AIアライメント問題は、人工知能(AI)システムが人間の価値観に従って行動することを保証することに重点を置いている。
狭義のAIからAI(Artificial General Intelligence, AGI)やスーパーインテリジェンス(Superintelligence, 超知能)への進化に伴い、制御に対する恐怖と現実的なリスクがエスカレートした。
ここでは、避けられないAIのミスアライメントを受け入れることが、競合するエージェントの動的なエコシステムを育むための緊急戦略であるかどうかを検討する。
論文 参考訳(メタデータ) (2025-05-05T11:33:18Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - AI Alignment: A Comprehensive Survey [69.61425542486275]
AIアライメントは、AIシステムが人間の意図や価値観に沿って振る舞うようにすることを目的としている。
AIアライメントの重要な目的として、ロバストネス、解釈可能性、制御可能性、倫理という4つの原則を特定します。
我々は、現在のアライメント研究を、前方アライメントと後方アライメントの2つの重要なコンポーネントに分解する。
論文 参考訳(メタデータ) (2023-10-30T15:52:15Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。