論文の概要: Resource Rational Contractualism Should Guide AI Alignment
- arxiv url: http://arxiv.org/abs/2506.17434v1
- Date: Fri, 20 Jun 2025 18:57:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.411241
- Title: Resource Rational Contractualism Should Guide AI Alignment
- Title(参考訳): リソース合理的契約主義はAIアライメントをガイドすべきである
- Authors: Sydney Levine, Matija Franklin, Tan Zhi-Xuan, Secil Yanik Guyot, Lionel Wong, Daniel Kilov, Yejin Choi, Joshua B. Tenenbaum, Noah Goodman, Seth Lazar, Iason Gabriel,
- Abstract要約: 契約主義的アライメントは、多様な利害関係者が支持する合意の中で決定を下すことを提案する。
我々は、AIシステムが合理的な当事者が形成する合意を近似する枠組みであるリソース・リアリズムを提案する。
RRC対応エージェントは、効率的に機能するだけでなく、変化する人間の社会世界への適応と解釈を動的に行うことができる。
- 参考スコア(独自算出の注目度): 69.07915246220985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI systems will soon have to navigate human environments and make decisions that affect people and other AI agents whose goals and values diverge. Contractualist alignment proposes grounding those decisions in agreements that diverse stakeholders would endorse under the right conditions, yet securing such agreement at scale remains costly and slow -- even for advanced AI. We therefore propose Resource-Rational Contractualism (RRC): a framework where AI systems approximate the agreements rational parties would form by drawing on a toolbox of normatively-grounded, cognitively-inspired heuristics that trade effort for accuracy. An RRC-aligned agent would not only operate efficiently, but also be equipped to dynamically adapt to and interpret the ever-changing human social world.
- Abstract(参考訳): AIシステムはすぐに人間の環境をナビゲートし、目標と価値が多様化する人々や他のAIエージェントに影響を与える決定をしなければならない。
契約主義的アライメントは、多様な利害関係者が適切な条件の下で支持するという合意の中で、これらの決定を根拠にすることを提案している。
そこで我々は,AIシステムが合意を近似する枠組みとして,規範的かつ認知的に着想を得たヒューリスティックス(ヒューリスティックス,ヒューリスティックス,ヒューリスティックス)のツールボックスに描画することで,合理的当事者の合意を近似する枠組みを提案する。
RRC対応エージェントは、効率的に機能するだけでなく、変化する人間の社会世界への適応と解釈を動的に行うことができる。
関連論文リスト
- FAIRTOPIA: Envisioning Multi-Agent Guardianship for Disrupting Unfair AI Pipelines [1.556153237434314]
AIモデルは積極的な意思決定者となり、しばしば人間の監督なしに行動している。
エージェントは彼らの環境から学ぶので、公正な保護者としてエージェントを想定する。
本稿では,マルチロールエージェントをエンドツーエンド(人間からAI)のシナジースキームに組み込むフェアネス・バイ・デザイン手法を提案する。
論文 参考訳(メタデータ) (2025-06-10T17:02:43Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
エージェント人工知能(AI)は、自律的に長期的な目標を追求し、意思決定を行い、複雑なマルチターンを実行することができる。
この指導的役割から積極的執行課題への移行は、法的、経済的、創造的な枠組みを確立した。
我々は,創造性と知的財産,法的・倫理的考察,競争効果の3つの分野における課題を探求する。
論文 参考訳(メタデータ) (2025-02-01T03:14:59Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Beyond Preferences in AI Alignment [15.878773061188516]
我々は、AIアライメントに対する優先主義的アプローチを特徴づけ、挑戦する。
人間の価値観の濃厚なセマンティックな内容が、嗜好がどのように捉えられていないかを示す。
我々は、AIシステムは、彼らの社会的役割に適した規範的基準に適合すべきであると主張する。
論文 参考訳(メタデータ) (2024-08-30T03:14:20Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - AI Alignment: A Comprehensive Survey [69.61425542486275]
AIアライメントは、AIシステムが人間の意図や価値観に沿って振る舞うようにすることを目的としている。
AIアライメントの重要な目的として、ロバストネス、解釈可能性、制御可能性、倫理という4つの原則を特定します。
我々は、現在のアライメント研究を、前方アライメントと後方アライメントの2つの重要なコンポーネントに分解する。
論文 参考訳(メタデータ) (2023-10-30T15:52:15Z) - Bridging the Global Divide in AI Regulation: A Proposal for a Contextual, Coherent, and Commensurable Framework [0.9622882291833615]
本稿では、人工知能(AI)を制御するための文脈的・一貫性的・包括的枠組み(3C)を提案する。
コンテキスト性を確保するため、このフレームワークはAIライフサイクルを、基礎や汎用モデルを定義するのではなく、特定のタスクの学習とデプロイという2つのフェーズに分岐させる。
コンメンサビリティを確保するため、この枠組みはリスクの測定と緩和のための国際標準の採用を促進する。
論文 参考訳(メタデータ) (2023-03-20T15:23:40Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。