Enhancing quantum noise characterization via extra energy levels
- URL: http://arxiv.org/abs/2506.09131v2
- Date: Sun, 13 Jul 2025 23:33:52 GMT
- Title: Enhancing quantum noise characterization via extra energy levels
- Authors: Senrui Chen, Akel Hashim, Noah Goss, Alireza Seif, Irfan Siddiqi, Liang Jiang,
- Abstract summary: We show how to use extra energy levels to reduce the gauge ambiguity in characterizing both SPAM and gate noise in the qubit subspace.<n>We experimentally implement these ideas on a superconducting quantum computing device and demonstrate a qutrit-enabled enhancement in noise characterization precision.
- Score: 1.5512834881538398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noise is a major challenge for building practical quantum computing systems. Precise characterization of quantum noise is crucial for developing effective error mitigation and correction schemes. However, state preparation and measurement (SPAM) errors on many current platforms can introduce large ambiguity into conventional noise characterization methods. In this work, we propose a scheme for enhancing quantum noise characterization using additional energy levels. We first develop a comprehensive theory on the identifiability of n-qudit SPAM noise given high-quality single-qudit control, showing the existence of gauge freedoms which can be completely described using subsystem depolarizing maps. We then show how to use these extra energy levels to reduce the gauge ambiguity in characterizing both SPAM and gate noise in the qubit subspace. We experimentally implement these ideas on a superconducting quantum computing device and demonstrate a qutrit-enabled enhancement in noise characterization precision.
Related papers
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Readout error mitigated quantum state tomography tested on superconducting qubits [0.0]
We test the ability of readout error mitigation to correct realistic noise found in systems composed of quantum two-level objects (qubits)
By treating readout error mitigation in the context of state tomography the method becomes largely readout mode-, architecture-, noise source-, and quantum state-independent.
We identify noise sources for which readout error mitigation worked well, and observed decreases in readout by a factor of up to 30.
arXiv Detail & Related papers (2023-12-07T10:54:17Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Leveraging hardware-control imperfections for error mitigation via
generalized quantum subspace [0.8399688944263843]
In the era of quantum computing without full fault-tolerance, it is essential to suppress noise effects via the quantum error mitigation techniques to enhance the computational power of the quantum devices.
One of the most effective noise-agnostic error mitigation schemes is the generalized quantum subspace expansion (GSE) method.
We propose the fault-subspace method, which constructs an error-mitigated quantum state with copies of quantum states with different noise levels.
arXiv Detail & Related papers (2023-03-14T07:01:30Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Generalized quantum subspace expansion [0.2936007114555107]
We propose a novel quantum subspace method which can handle, coherent, and algorithmic errors in quantum computers.
By fully exploiting the substantially extended subspace, we can efficiently mitigate the noise present in the spectra of a given Hamiltonian.
We show that out protocol inherits the advantages of previous error-agnostic QEM techniques as well as overcoming their drawbacks.
arXiv Detail & Related papers (2021-07-06T13:34:19Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Multi-level Quantum Noise Spectroscopy [40.434546680037606]
Existing quantum noise spectroscopy protocols measure an aggregate amount of noise affecting a quantum system.
We propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit.
arXiv Detail & Related papers (2020-03-05T17:31:30Z) - Mitigating realistic noise in practical noisy intermediate-scale quantum
devices [0.5872014229110214]
Quantum error mitigation (QEM) is vital for noisy intermediate-scale quantum (NISQ) devices.
Most conventional QEM schemes assume discrete gate-based circuits with noise appearing either before or after each gate.
We show it can be effectively suppressed by a novel QEM method.
arXiv Detail & Related papers (2020-01-14T16:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.