論文の概要: Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search
- arxiv url: http://arxiv.org/abs/2506.09171v1
- Date: Tue, 10 Jun 2025 18:36:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.867012
- Title: Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search
- Title(参考訳): 原子 Fact Augmentation と Lookahead Search による文脈学習によるLLMエージェント計画の改善
- Authors: Samuel Holt, Max Ruiz Luyten, Thomas Pouplin, Mihaela van der Schaar,
- Abstract要約: 大規模言語モデル(LLM)はますます有能になるが、複雑で対話的な環境で効果的に機能するためには、重要なガイダンスや広範な相互作用履歴を必要とすることが多い。
テキスト内学習による計画能力を高める新しいLLMエージェントフレームワークを提案する。
我々のエージェントは、その相互作用軌跡からタスククリティカルな原子事実'を抽出することを学ぶ。
- 参考スコア(独自算出の注目度): 48.348209577994865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly capable but often require significant guidance or extensive interaction history to perform effectively in complex, interactive environments. Existing methods may struggle with adapting to new information or efficiently utilizing past experiences for multi-step reasoning without fine-tuning. We introduce a novel LLM agent framework that enhances planning capabilities through in-context learning, facilitated by atomic fact augmentation and a recursive lookahead search. Our agent learns to extract task-critical ``atomic facts'' from its interaction trajectories. These facts dynamically augment the prompts provided to LLM-based components responsible for action proposal, latent world model simulation, and state-value estimation. Planning is performed via a depth-limited lookahead search, where the LLM simulates potential trajectories and evaluates their outcomes, guided by the accumulated facts and interaction history. This approach allows the agent to improve its understanding and decision-making online, leveraging its experience to refine its behavior without weight updates. We provide a theoretical motivation linking performance to the quality of fact-based abstraction and LLM simulation accuracy. Empirically, our agent demonstrates improved performance and adaptability on challenging interactive tasks, achieving more optimal behavior as it accumulates experience, showcased in tasks such as TextFrozenLake and ALFWorld.
- Abstract(参考訳): 大規模言語モデル(LLM)はますます有能になるが、複雑で対話的な環境で効果的に機能するためには、重要なガイダンスや広範な相互作用履歴を必要とすることが多い。
既存の手法では、新しい情報に適応したり、過去の経験を微調整なしで多段階の推論に効率的に活用するのに苦労することがある。
我々は,原子的事実の増大と再帰的なルックアヘッド探索によって促進される,コンテキスト内学習による計画能力を向上させる新しいLLMエージェントフレームワークを提案する。
我々のエージェントは、その相互作用軌跡からタスククリティカルな ` `atomic facts'' を抽出することを学ぶ。
これらの事実は、アクション提案、潜在世界モデルシミュレーション、状態値推定に責任を持つLCMベースのコンポーネントに提供されるプロンプトを動的に増大させる。
計画は、LLMが潜在的な軌道をシミュレートし、蓄積された事実と相互作用履歴によって導かれる結果を評価する、深度制限されたルックアヘッドサーチによって実行される。
このアプローチにより、エージェントはオンラインでの理解と意思決定を改善し、その経験を活用して、重み付けをせずにその振る舞いを洗練できる。
ファクトベース抽象化の品質とLLMシミュレーションの精度をリンクする理論的動機を提供する。
実験では,TextFrozenLake や ALFWorld などのタスクで紹介された,対話的なタスクに対するパフォーマンス向上と適応性を実証し,経験を蓄積する上で,より最適な動作を実現する。
関連論文リスト
- MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - Prompting is Not All You Need! Evaluating LLM Agent Simulation Methodologies with Real-World Online Customer Behavior Data [62.61900377170456]
人間の行動のシミュレーションにおいて「主観的信頼性」よりも「LLMの客観的精度」を評価することに重点を置いている。
本稿では,Web ショッピング行動生成の課題に対して,最先端 LLM の総合評価を行った。
論文 参考訳(メタデータ) (2025-03-26T17:33:27Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
本稿では,言語モデルロールアウト(KALM)の知識エージェントを紹介する。
大規模言語モデル(LLM)から、オフラインの強化学習手法によってエージェントが容易に学習できる想像上のロールアウトの形で知識を抽出する。
未確認の目標を持つタスクの実行において46%の成功率を達成し、ベースラインメソッドによって達成された26%の成功率を大幅に上回る。
論文 参考訳(メタデータ) (2024-04-14T13:19:40Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
大規模な現実世界のAPIを制御するために設計された新しいツール呼び出しパイプラインを導入します。
このパイプラインは人間のタスク解決プロセスを反映し、複雑な実際のユーザクエリに対処する。
ToolBenchベンチマークにおけるSum2Actパイプラインの実証的な評価は、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-28T08:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。