Classical algorithm inspired by the feedback-based algorithm for quantum optimization and local counterdiabatic driving
- URL: http://arxiv.org/abs/2506.09214v1
- Date: Tue, 10 Jun 2025 20:16:44 GMT
- Title: Classical algorithm inspired by the feedback-based algorithm for quantum optimization and local counterdiabatic driving
- Authors: Takuya Hatomura,
- Abstract summary: We propose a quantum-inspired classical algorithm for optimization problems, named the counterbaticity-assisted classical algorithm for optimization (CACAO)<n>In this algorithm, a solution of a given optimization problem isally searched with classical spin dynamics based on quantum Lynov control of local counterdiabatic driving.<n>We compare the performance of CACAO with that of quantum timeevolution algorithms, i.e., quantum annealing, the feedback-based algorithm for quantum optimization (known as FALQON) and the counterdiabatic feedback-based quantum algorithm (known as CD-FQA)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a quantum-inspired classical algorithm for combinatorial optimization problems, named the counterdiabaticity-assisted classical algorithm for optimization (CACAO). In this algorithm, a solution of a given combinatorial optimization problem is heuristically searched with classical spin dynamics based on quantum Lyapunov control of local counterdiabatic driving. We compare the performance of CACAO with that of quantum time-evolution algorithms, i.e., quantum annealing, the feedback-based algorithm for quantum optimization (known as FALQON), and the counterdiabatic feedback-based quantum algorithm (known as CD-FQA). We also study the performance of CACAO applied to large systems up to $10,000$ spins.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Hybrid Quantum-Classical Algorithms [0.0]
This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms.
Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry.
arXiv Detail & Related papers (2024-06-18T07:54:05Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Quantum version of the k-NN classifier based on a quantum sorting
algorithm [0.0]
We develop a new quantum version of the classical machine learning algorithm known as k-nearest neighbors (k-NN)
Both the efficiency and performance of this new quantum version of the k-NN algorithm are compared to those of the classical k-NN and another quantum version proposed by Schuld et al.
arXiv Detail & Related papers (2022-04-07T22:31:01Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Digitized-counterdiabatic quantum approximate optimization algorithm [3.0638256603183054]
We propose a digitized version of QAOA enhanced via the use of shortcuts to adiabaticity.
We apply our digitized-counterdiabatic QAOA to Ising models, classical optimization problems, and the P-spin model, demonstrating that it outperforms standard QAOA in all cases.
arXiv Detail & Related papers (2021-07-06T17:57:32Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.