論文の概要: Accelerating Large-Scale Regularized High-Order Tensor Recovery
- arxiv url: http://arxiv.org/abs/2506.09594v1
- Date: Wed, 11 Jun 2025 10:53:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:02.868778
- Title: Accelerating Large-Scale Regularized High-Order Tensor Recovery
- Title(参考訳): 大規模規則化高次テンソルリカバリの高速化
- Authors: Wenjin Qin, Hailin Wang, Jingyao Hou, Jianjun Wang,
- Abstract要約: 既存のテンソル回収法では, スケール変動が構造特性に与える影響を認識できない。
既存の研究は、大規模高次テンソルデータを扱う計算コストの禁止に直面している。
- 参考スコア(独自算出の注目度): 14.523033614261628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, existing tensor recovery methods fail to recognize the impact of tensor scale variations on their structural characteristics. Furthermore, existing studies face prohibitive computational costs when dealing with large-scale high-order tensor data. To alleviate these issue, assisted by the Krylov subspace iteration, block Lanczos bidiagonalization process, and random projection strategies, this article first devises two fast and accurate randomized algorithms for low-rank tensor approximation (LRTA) problem. Theoretical bounds on the accuracy of the approximation error estimate are established. Next, we develop a novel generalized nonconvex modeling framework tailored to large-scale tensor recovery, in which a new regularization paradigm is exploited to achieve insightful prior representation for large-scale tensors. On the basis of the above, we further investigate new unified nonconvex models and efficient optimization algorithms, respectively, for several typical high-order tensor recovery tasks in unquantized and quantized situations. To render the proposed algorithms practical and efficient for large-scale tensor data, the proposed randomized LRTA schemes are integrated into their central and time-intensive computations. Finally, we conduct extensive experiments on various large-scale tensors, whose results demonstrate the practicability, effectiveness and superiority of the proposed method in comparison with some state-of-the-art approaches.
- Abstract(参考訳): 現在、既存のテンソルリカバリ法は、テンソルスケールの変動が構造特性に与える影響を認識できない。
さらに、大規模高次テンソルデータを扱う場合、既存の研究は計算コストの禁止に直面している。
これらの問題を緩和するために、Krylov subspace iteration, block Lanczos bidiagonalization process, and random projection Strategyにより、まず低ランクテンソル近似(LRTA)問題に対する2つの高速で正確なランダム化アルゴリズムを考案する。
近似誤差推定の精度に関する理論的境界を確立する。
次に、大規模テンソル復元に適した新しい一般化された非凸モデリングフレームワークを開発し、そこでは、大規模テンソルに対する洞察に富んだ事前表現を実現するために、新しい正規化パラダイムを利用する。
以上の結果に基づいて,不等化および量子化された状況下での高次テンソル回復タスクに対して,新しい統合された非凸モデルと効率的な最適化アルゴリズムについて検討する。
提案アルゴリズムを大規模テンソルデータに対して実用的かつ効率的に適用するために,提案したランダム化LRTAスキームを中央および時間集約計算に統合する。
最後に, 各種大規模テンソルについて広範囲に実験を行い, 提案手法の実用性, 有効性, 優越性について, いくつかの最先端手法との比較を行った。
関連論文リスト
- TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training [91.8932638236073]
textbfTensorGRaDは,重み付けに伴うメモリ問題に直接対処する新しい手法である。
SparseGRaD は総メモリ使用量を 50% 以上削減し,同時に精度も向上することを示した。
論文 参考訳(メタデータ) (2025-01-04T20:51:51Z) - Factor Augmented Tensor-on-Tensor Neural Networks [3.0040661953201475]
本稿では、テンソル因子モデルとディープニューラルネットワークを融合したFATTNN(Facter Augmented-on-Tensor Neural Network)を提案する。
提案アルゴリズムは,予測精度を大幅に向上し,計算時間を大幅に短縮することを示す。
論文 参考訳(メタデータ) (2024-05-30T01:56:49Z) - Handling The Non-Smooth Challenge in Tensor SVD: A Multi-Objective Tensor Recovery Framework [15.16222081389267]
テンソルデータの非滑らかな変化に対処するために,学習可能なテンソル核ノルムを持つ新しいテンソル復元モデルを導入する。
我々は,提案するテンソル完備化モデルを反復的に解くために,交代近似乗算法 (APMM) という新しい最適化アルゴリズムを開発した。
さらに,APMMに基づく多目的テンソル復元フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:16:33Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
基本的な課題は、高度に不完全な測定からテンソルを忠実に回収することである。
タッカー分解におけるテンソル因子を直接回復するアルゴリズムを開発した。
2つの正準問題に対する基底真理テンソルの線形独立率で確実に収束することを示す。
論文 参考訳(メタデータ) (2021-04-29T17:44:49Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Partially Observed Dynamic Tensor Response Regression [17.930417764563106]
現代のデータ科学では、動的テンソルデータが多くの応用で普及している。
本研究では,部分的に観察された動的テンソル間隔を予測子として回帰モデルを開発する。
本稿では,シミュレーションによる提案手法の有効性と2つの実応用について述べる。
論文 参考訳(メタデータ) (2020-02-22T17:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。